Electronic Supplementary Information

for

The hydration of glucose: the local configurations in sugar-water hydrogen bonds

Teppei Suzuki

Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

Table S1: computational details

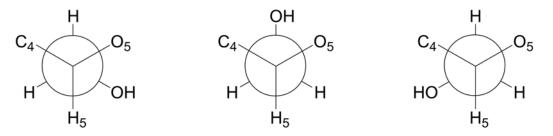
Table S2: the conformational properties of the staggered hydroxymethyl groups in my *ab initio* molecular dynamics simulations

Fig. S1: three staggered hydroxymethyl rotational conformations

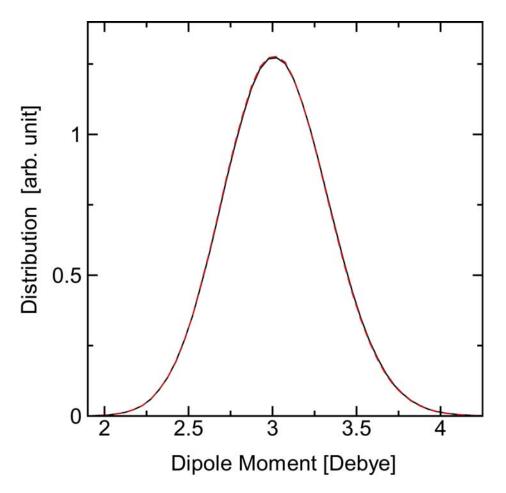
Fig. S2: the dipole moment of water molecules in the first hydration shell

Supplementary Tables

Simulation	Initial	Cut-off energy	Fictitious	Time step (fs)	Time length of
	conformation	(Ry)	mass (au)		microcanonical
					simulation (ps)
			The β anomer		
1	G^+	70	400	0.0968	8.2
2	G^+	70	400	0.0968	6.0
3	G^+	70	400	0.0968	6.0
4	G^{-}	80	340	0.0822	10.0
5	G^{-}	70	400	0.0968	6.0
6	Т	70	400	0.0968	6.0
7	Т	70	400	0.0968	6.0
			The α anomer		
8	G^+	70	400	0.0968	6.0
9	G^+	70	400	0.0968	6.0
10	G^{-}	70	400	0.0968	6.0
11	G^{-}	70	400	0.0968	6.0
12	G^{-}	80	340	0.0822	10.0
13	Т	70	400	0.0968	6.0
14	Т	70	400	0.0968	6.0


 Table S1. Computational details.

	O5-C5-C	05-C5-C6-O6		С5-С6-О6-Н6	
	Average (deg)	Rotamer	_	Average (deg)	Rotamer
			The β anomer		
1		G^+/T			$g^+/t/g^-$
2	62.7	G^+		181.5	t
3	75.0	G^+		-59.2	g
4	-68.4	G^{-}		66.8	$\overset{g}{_{g^+}}$
5	-59.7	G^{-}		-132.6	t
6	129.1	Т		183.4	t
7	152.5	Т		-81.7	g
			The α anomer		
8	61.3	G^+		-85.0	g
9	59.5	G^+		-138.1	t
10	-58.9	G^{-}		-85.9	g
11	-66.4	G^{-}		70.7	g g + g g
12	-60.8	G^{-}		75.9	g^+
13	166.0	Т		137.8	t
14	<u> </u>	G^+/T			g^{-}/t


Table S2. The conformational properties of the staggered hydroxymethyl groups in my *ab initio* molecular dynamics simulations

I refer to the rotamers associated with the C5–C6–O6–H6 torsion angle as $g+(\approx+60^\circ)$, $g-(\approx-60^\circ)$, and t ($\approx180^\circ$). If there existed two or three distinct rotamers in a simulation, then the average value is not shown because it is almost meaningless; instead, the rotamers that actually appeared in that simulation are simply reported, being separated by the slash. The average value for the O5–C5–C6–O6 angle in **6** (129.1 deg) deviates significantly from its ideal value (180 deg), but the conformation is still viewed as the T rotamer; the deviation of this kind is discussed in my previous work [T. Suzuki, H. Kawashima and T. Sota, J. Phys. Chem. B, 2006, **110**, 2405].

Supplementary Figures

Fig. S1. The three staggered hydroxymethyl rotational conformations. From left to right: G^+ , G^- , and T. (These are also referred to as *gt*, *gg*, and *tg* in the literature.)

Fig. S2. The dipole moment of water molecules in the liquid: black solid line, the dipole moment of water molecules that formed H-bonds with water molecules (including water molecules forming H-bonds with first-hydration-shell water molecules); red dashed line, the dipole moment of water molecules that formed H-bonds neither with the glucose molecule nor with first-hydration-shell water molecules. The results show that the two distributions are almost identical. For this reason, it is relevant to regard those water molecules which form H-bonds only with water molecules as *bulk* water molecules for my main objective.