Supplementary Information

Fluorescence Properties of Systems with

Multiple Förster Transfer Pairs

Zhong-Jie Jiang, Werner A. Goedel*

Physical Chemistry, Chemnitz University of Technology,

Table S-1: list of abbreviations

Itransmitted	transmitted light
Iincident	incident light
Idetected	the intensities of (fluorescence) light detected at the detector
d	length of the optical path through the sample
i,j	indices signifying individual dyes, e.g. dye 1, dye 2, etc.;
\mathcal{E}_i	molar absorption coefficient of dye <i>i</i>
c_i	molar concentration of the dye <i>i</i> .
λ	wavelength
$f_i(\lambda)$	fluorescence quantum yield of emission within a wavelength rage of λ and λ +d λ .
$\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma}$	predefined wavelengths chosen by the experimentalist to characterize the fluorescent properties of his system.
$R_{\alpha}, R_{\beta}, R_{\gamma},$	intensity ratios chosen by the experimentalist
$F_i(\lambda)$	fluorescence efficiency; comprises $f_i(\lambda)$ and all those instrumentation parameters that will cancel out in Eq. (7)-(9).
p _{ij}	probability of Förster transfer of excitation from Donor <i>i</i> to acceptor <i>j</i>
(1-p _{ij})	probability of deactivation of the donor via either spontaneous emission or non-radiative decay
$ au_{\mathrm{D}}$	lifetime of the excited state of the donor in absence of the acceptor,
n _{D→} A,	rate of transfer from donor to acceptor
r _{ij}	Förster radius, the distance between donor and acceptor at which the rate of transfer is equal to the rate of deactivation of the donor
c _{ij}	critical transfer concentration [molecules per volume] characteristic for donor-acceptor pair $i \rightarrow j$
K _i	rate constant for quenching (Stern Vollmer eq.)
p_{ii}	probability for self-quenching of the donor
P _i	probability (in presence of self quenching) of the excitation neither being transferred from an excited donor to an acceptor nor being self-quenched
P _{ij}	probability of energy transfer from the donor i to the acceptor j (in Presence of self quenching or other acceptors than j)
g _{ij}	probability that excitation transferred from donor <i>i</i> to acceptor <i>j</i> is emitted as light.
p _{jj}	probability of self-quenching of the acceptor.
FL	Fluorescein
ES	Eosin
RB	Rhodamine B
AOT	bis(2-ethylhexyl) sulfosuccinate sodium salt

Table S-2a:

$R\alpha$ as a function of C2 and C3

(Datasets graphically represented in figure 11a)

Upper line: exponential representation

Middle line: Stern-Vollmer equation

Bottom line: experimental data

		C ₂ [10 ⁻⁵ mol L ⁻¹]							
	Rα								
		. 0	1	2	3	4	5	6	
		0.748	0.662	0.593	0.536	0.487	0.446	0.410	
		0.749	0.663	0.594	0.538	0.492	0.453	0.419	
	0	0.752	0.663	0.602	0.543	0.490	0.457	0.423	
		0.688	0.616	0.556	0.505	0.462	0.424	0.392	
		0.693	0.621	0.563	0.514	0.473	0.437	0.406	
	2	0.713	0.620	-	-	-	-	-	
		0.641	0.579	0.526	0.481	0.441	0.407	0.377	
		0.648	0.587	0.536	0.493	0.455	0.423	0.394	
	4	0.674	-	0.543	-	-	-	-	
lou		0.603	0.547	0.5	0.459	0.423	0.391	0.363	
-s D		0.610	0.556	0.512	0.473	0.439	0.409	0.383	
10	6	0.635	-	-	0.486	-	-	-	
<u>-</u> ~		0.569	0.520	0.477	0.439	0.406	0.376	0.350	
\cup		0.576	0.529	0.489	0.454	0.423	0.395	0.371	
	8	0.603	-	-	-	0.435	-	-	
		0.539	0.494	0.455	0.420	0.390	0.362	0.338	
		0.547	0.505	0.468	0.436	0.407	0.382	0.359	
	10	0.568	-	-	-	-	0.399	-	
		0.512	0.471	0.435	0.403	0.374	0.349	0.325	
		0.520	0.482	0.449	0.419	0.392	0.369	0.347	
	12	0.541	-	-	-	-	-	0.359	

Table S-2b:

R_β as a function of C2 and C3

(Datasets graphically represented in figure 11b)

Upper line: exponential representation

Middle line: Stern-Vollmer equation

Bottom line: experimental data

		C ₂ [10 ⁻⁵ mol L ⁻¹]							
	R _β								
	r N	. 0	1	2	3	4	5	6	
		0.208	0.275	0.329	0.373	0.411	0.443	0.471	
		0.207	0.274	0.328	0.371	0.408	0.438	0.465	
	0	0.206	0.274	0.325	0.368	0.410	0.440	0.466	
		0.204	0.261	0.308	0.348	0.382	0.411	0.436	
		0.200	0.256	0.303	0.341	0.373	0.401	0.426	
	2	0.186	0.253						
		0.198	0.248	0.29	0.325	0.355	0.382	0.405	
		0.194	0.242	0.282	0.316	0.346	0.371	0.393	
Ľ	4	0.172		0.272					
lou		0.191	0.235	0.273	0.305	0.332	0.357	0.378	
-s D		0.188	0.23	0.266	0.296	0.322	0.345	0.365	
10	6	0.159			0.276				
-ώ		0.185	0.224	0.258	0.287	0.312	0.334	0.354	
\cup		0.184	0.221	0.252	0.279	0.302	0.323	0.341	
	8	0.147				0.281			
		0.179	0.214	0.244	0.271	0.294	0.314	0.332	
		0.18	0.212	0.24	0.264	0.285	0.303	0.320	
	10	0.137					0.279		
		0.174	0.205	0.232	0.256	0.277	0.296	0.312	
		0.176	0.205	0.229	0.251	0.270	0.286	0.302	
	12	0.128						0.270	

Table S-2c:

Rγ as a function of C2 and C3 (Datasets graphically represented in figure 11c) Upper line: exponential representation Middle line: Stern-Vollmer equation Bottom line: experimental data

		$C_2 \ [10^{-5} \text{ mol } L^{-1}]$							
	Rγ								
		. 0	1	2	3	4	5	6	
		0.044	0.063	0.078	0.09	0.102	0.111	0.120	
		0.044	0.063	0.078	0.09	0.101	0.109	0.117	
	0	0.042	0.063	0.073	0.089	0.100	0.103	0.116	
		0.109	0.123	0.136	0.147	0.156	0.165	0.173	
		0.108	0.122	0.134	0.145	0.154	0.161	0.168	
	2	0.101	0.127	-	-	-	-	-	
		0.161	0.173	0.184	0.194	0.203	0.211	0.218	
L ⁻¹]		0.159	0.171	0.182	0.191	0.199	0.206	0.213	
	4	0.155	-	0.185	-	-	-	-	
lou		0.206	0.217	0.227	0.236	0.245	0.252	0.259	
-s L		0.202	0.213	0.223	0.231	0.239	0.246	0.252	
10	6	0.206	-	-	0.238	-	-	-	
<u>-</u> ~		0.246	0.256	0.266	0.274	0.282	0.29	0.296	
\cup		0.24	0.25	0.259	0.268	0.275	0.282	0.288	
	8	0.250	-	-	-	0.284	-	-	
		0.282	0.291	0.3	0.309	0.317	0.324	0.331	
		0.273	0.283	0.292	0.3	0.308	0.315	0.321	
	10	0.295	-	-	-	-	0.322	-	
		0.314	0.324	0.333	0.341	0.349	0.356	0.362	
		0.303	0.313	0.322	0.33	0.338	0.345	0.351	
	12	0.331	-	-	-	-	-	0.372	

Figure S-1:

Comparison of the optical density $[= lg(I_0/I)/(path length)]$ of diluted aqueous solution of the dyes used in the experiments to the optical density of a dispersion of reverse micelles in isooctane prepared at identical conditions as described in the main paper: in the experiments conducted here, attenuation due to scattering is negligible compared to attenuation due to absorption.