Physics		cular decomposition of their			cyclohexadiene (1,4-CHD). ^a The			method		B3LYP/6-31G** CCSD/T\/cc-nv/d7//B31 VD/6-31G**	OVGF/6-311+G*	Expt. ¹⁰	OVGF/6-311+G*	OVGF/6-311+G*	OVGF/6-311+G*	OVGF/6-311+G*	B3LYP/6-31G**	CCSD(T)/cc-pvdz// B3LYP/6-31G**	OVGF/6-311+G*	DVGF/6-311+G*
emical F 7		nimole		l. Lin	and 1,4-			IP/A		5.4 5.7	5.7		6.3	7.1	7.9	8.5	15.0	15.1	15.0	15,4
<i>nistry Ch</i> eties 200	ıtion	s and u	7.	ashi, S. H	,3-CHD)			IP, eV		8.36 8.85	8.79		9.69	11.02	12.18	13.14	23.19	23.40	23.19	23,83
<i>Physical Che</i> e Owner Soci	ry Inform	ohexadiene	dications	ebel, M. Hay:	bhexadiene (1			MO		OMOH			HOMO-1	HOMO-2	HOMO-3	HOMO-4	OMOH			HOMO-1
terial (ESI) for , journal is © Th	Supplementa	ation of cycl	mono- ar	lbina, A. M. Me	(IP) of 1,3-cycle	/ kcal/mol		molecule	1,4-CHD→	1,4-CHD ^{+ c}							1,4-CHD ^{2+ e}			
ientary Ma This		ton ioniz		T. S. Zyu	potentials	eV = 35.7	- - -	IP/A		5.1 5.3	5.3	5.3	7.0	7.2	7.6	8.2	14.6	14.7	14.8 14.0	16,2
Supplem		of multipho			ole ionization	300 nm = 1.55		IP, eV		7.86 8.77	8.20	8.25	10.90	11.19	11.70	12.76	22.58	22.81	22.86 22 1	25.11
		ical study c			ngle and dout	eleneth À is §	0	MO		OMOH			HOMO-1	HOMO-2	HOMO-3	HOMO-4	OMOH			HOMO-1
		Theoret			Table S1. Si	resonant wav		molecule	1,3-CHD→	1,3-CHD ^{+b}							1,3-CHD ^{2+ d}			

OVGF/6-311+G*	$Expt.^{10,23}$	OVGF/6-311+G*	B3LYP/6-31G**	CCSD(T)/cc-pvdz// B3LYP/6-31G**						
16,5	17,3	17,7	18,4	18,3					14.9	15.2
25,50	26,83	27,40	28,56	28,37					23.10	23.52
HOMO-2	HOMO-3	HOMO-4	HOMO-5	9-0MOH					g HOMO	
									1,4-CHD ⁺⁺	
16,3	16,6	17,2	17,6	18,4	18,5	18.5	18.8	19.6	15.6	15.9
25.20	25.80	26.61	27.29	28.46	28.61	28.73	29.1	30.33	24.17	24.59
HOMO-2	HOMO-3	HOMO-4	HOMO-5	9-0WOH	HOMO-7	HOMO-8		6-0MOH	OMOH	
									1,3-CHD ^{2+ f}	

^aFor 1,3- and 1,4- cyclohexadiene singlet isomer is more stable then triplet one on 2.34 and 4.27 eV, respectively, according to the

CCSD(T)/cc-pvdz//B3LYP/6-31G** calculation.

^bComputed at the geometry of the neutral singlet 1,3-CHD isomer.

^cComputed at the geometry of the neutral singlet 1,4-CHD isomer.

^dDication in singlet electronic state computed at the geometry of the neutral singlet 1,3-CHD isomer.

^eDication in singlet electronic state computed at the geometry of the neutral singlet 1,4-CHD isomer.

^fDication in triplet electronic state computed at the geometry of the neutral singlet 1,3-CHD isomer.

⁸Dication in triplet electronic state computed at the geometry of the neutral singlet 1,4-CHD isomer.

Table S2. Single ionization potentials (IP) for the 1,3-cyclohexadiene (1,3-CHD⁺) and 1,4-cyclohexadiene (1,4-CHD⁺) monocations.

The resonant wavelength λ is 800nm = 1.55 eV = 35.7 kcal/mol.

pod		_YP/6-31G**	SD(T)/cc-pvdz//B3LYP/6-31G**	GF/6-311+G*	_YP/6-31G**	SD(T)/cc-pvdz//B3LYP/6-31G**	
mei		B3]	S	0	B3]	CC	
IP/A		9.33	9.20	9.30	9.42	9.40	
IP, eV		14.46	14.26	14.40	14.60	14.57	
ОМ		OMOH	OMOH	ОМОН	OMOH	OMOH	
molecule	1,4-CHD→	1,4-CHD ⁺⁺ singlet ^b			1,4-CHD ⁺⁺ triplet ^b		
IP/A		9.13	9.06	9.46	10.50	10.53	
IP, eV		14.15	14.04	14.67	16.27	16.33	
OM		OMOH	OMOH	OMOH	OMOH	OMOH	
molecule	$1,3\text{-CHD}^+ \rightarrow$	1,3-CHD ⁺⁺ singlet ^a			1,3-CHD ⁺⁺ triplet ^a		

^aComputed at the geometry of monocation 1,3-CHD⁺.

^bComputed at the geometry of monocation 1,4-CHD⁺.

Table S3. Excitation energies (E_e, in eV) and oscillator strengths (*f*) for 1,3-CHD⁺ and 1,4-CHD⁺ calculated at various levels of theory

 $(\lambda = 1.55 \text{ eV}).$

Method	CASSCF(13,12)/6-311+G*	CASPT2(13,12)/6-311+G*	UOVGF/6-311+G*	CIS/aug-cc-pvdz	CISD/aug-cc-pvdz	TD(B3LYP)/aug-cc-pvdz	CIS/aug-cc-pvdz	CISD/aug-cc-pvdz	TD(B3LYP)/aug-cc-pvdz	CASSCF(13,12)/6-311+G*	CASPT2(13,12)/6-311+G*	TD(B3LYP)/aug-cc-pvdz		TD(B3LYP)/aug-cc-pvdz	CASSCF(13,12)/6-311+G*	CASPT2(13,12)/6-311+G*	CIS/aug-cc-pvdz	CISD/aug-cc-pvdz	TD(B3LYP)/aug-cc-pvdz	CIS/aug-cc-pvdz	CISD/aug-cc-pvdz	CIS/aug-cc-pvdz	CISD/aug-cc-pvdz	CIS/aug-cc-pvdz
E_{e}/λ	ı	I	I	ı	0.66	0.75						4.22		2.99							5.72		5.76	
f	0.0467	ı	ı	ı	0.0084	0.0314		0.0000				0.0248		0.0194	0.0106				0.0000		0.0292		0.0273	
${ m E_{e,}}$ 1.4-CHD ⁺	0.62	0.75	0.90	ı	1.02	1.17	6.68	7.67				6.54		4.63	3.97	4.61		ı	6.42	7.92	8.86	7.90	8.93	8.07
E_{e}/λ		ı	I	ı		1.81			3.75								I	5.00	ı					
f	0.0659	ı	I	ı	0.1124	0.0358		0.0698	0.0023	0.0646							-	0.4341	ı					
${ m E_{e,}}$ 1.3-CHD ⁺	2.73	2.55	2.72	3.13	3.14	2.81	5.92	5.85	5.82	4.97	5.44						8.81	7.75						
Transition	(HOMO-1→HOMO)						(HOMO-1→LUMO)					(HOMO-1→LUMO,	HOMO→LUMO+1)	(HOM0→LUM0+1,	HOMO-1→LUMO)		(HOMO-1→LUMO+1)			(HOMO-1→LUMO+2)		(HOMO-1→LUMO+3)		(HOMO-2→LUMO+1)

				7.53	0.0005		CISD/aug-cc-pvdz
(HOMO-1→LUMO+5)				4.30			CIS/aug-cc-pvdz
				5.09	0.0095		CISD/aug-cc-pvdz
				4.09	0.0000		TD(B3LYP)/aug-cc-pvdz
(HOMO-2→HOMO)	3.00			2.23			UOVGF/6-311+G*
	4.64			3.11	0.0000		CIS/aug-cc-pvdz
	3.33	0.0003		2.21	0.0000		CISD/aug-cc-pvdz
	2.75	0.0009		2.10	0.0000		TD(B3LYP)/aug-cc-pvdz
				2.58	0.0000		CASSCF(13,12)/6-311+G*
				2.70			CASPT2(13,12)/6-311+G*
(HOMO-3→HOMO)	5.12			4.30			CIS/aug-cc-pvdz
	3.71	0.0013		3.30	0.0060		CISD/aug-cc-pvdz
	3.19	0.0005		3.22	0.0033		TD(B3LYP)/aug-cc-pvdz
	3.71	0.0009					CASSCF(13,12)/6-311+G*
	4.00						CASPT2(13,12)/6-311+G*
(HOMO-4→HOMO)	7.21			6.22			CIS/aug-cc-pvdz
	5.41	0.0034	3.49	5.26	0.0240	3.40	CISD/aug-cc-pvdz
	4.18	0.0293	2.70	4.95	0.0372	3.19	TD(B3LYP)/aug-cc-pvdz
	4.27	0.1879		5.10	0.0093		CASSCF(13,12)/6-311+G*
	4.63			5.15			CASPT2(13,12)/6-311+G*
(HOMO-4→HOMO,	6.78						CIS/aug-cc-pvdz
HOMO-8→HOMO)	6.10	0.0010					CISD/aug-cc-pvdz
(HOMO-5→HOMO)	7.48			5.40			CIS/aug-cc-pvdz
	5.50	0.0079	3.55	4.35	0.0000		CISD/aug-cc-pvdz
	4.70	0.0000		4.09	0.0000		TD(B3LYP)/aug-cc-pvdz
(ОМОН←9-ОМОН)	6.74			7.02			CIS/aug-cc-pvdz
	5.33	0.0058	3.44	6.06	0.0000		CISD/aug-cc-pvdz
	5.40	0.0000		4.74	0.0000		TD(B3LYP)/aug-cc-pvdz
				4.60	0.0000		CASSCF(13,12)/6-311+G*
				4.63			CASPT2(13,12)/6-311+G*

(HOMO-7→HOMO)	8.99			5.76		CIS/aug-cc-pvdz
· ·	7.93	0.0046		5.04	0.0000	CISD/aug-cc-pvdz
	6.09	0.0098	3.94	5.69	0.0000	TD(B3LYP)/aug-cc-pvdz
(HOMO-8→HOMO)				6.50	0.0000	TD(B3LYP)/aug-cc-pvdz
(ОМОН←6-ОМОН)	5.69	0.0012				TD(B3LYP)/aug-cc-pvdz
(HOMO-10→HOMO)				7.30	0.0008	TD(B3LYP)/aug-cc-pvdz
(HOMO-2→LUMO)	7.45					CIS/aug-cc-pvdz
	6.41	0.0026				CISD/aug-cc-pvdz
	6.60	0.0016		6.76	0.0002	TD(B3LYP)/aug-cc-pvdz
(HOMO-3→LUMO)	7.75					CIS/aug-cc-pvdz
	6.78	0.0000				CISD/aug-cc-pvdz
	6.21	0.0012				TD(B3LYP)/aug-cc-pvdz
(HOMO-4→LUMO,	9.20					CIS/aug-cc-pvdz
HOMO-5→LUMO,	7.61	0.0024				CISD/aug-cc-pvdz
HOMO-7→HOMO)						
(OMOH←8-OMOH)				7.03		CIS/aug-cc-pvdz
				5.95	0.0000	CISD/aug-cc-pvdz
				5.55	0.0000	TD(B3LYP)/aug-cc-pvdz
(HOMO→LUMO)	4.00			5.396		UOVGF/6-311+G*
	4.42					CIS/aug-cc-pvdz
	4.18	0.0694	2.70			CISD/aug-cc-pvdz
	4.02	0.0852	2.59	4.87	0.0000	TD(B3LYP)/aug-cc-pvdz
	4.12	0.0049				CASSCF(13,12)/6-311+G*
	4.01					CASPT2(13,12)/6-311+G*
(HOM0→LUM0+1)	7.76			7.56		UOVGF/6-311+G*
	8.58			4.98		CIS/aug-cc-pvdz
	7.73	0.0067	5.00	5.46	0.0000	CISD/aug-cc-pvdz
	6.74	0.0045	4.35			TD(B3LYP)/aug-cc-pvdz
(HOM0→LUM0+2)	7.99			6.10		UOVGF/6-311+G*
(HOMO→LUMO+3)	8.84			9.13		UOVGF/6-311+G*

| UOVGF/6-311+G* |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 8.89 | 8.97 | 9.22 | 9.44 | 9.40 | 9.90 | 10.27 | 10.78 | 10.97 | 10.87 | 11.14 | 11.66 |
| 8.85 | 9.21 | 8.77 | 9.59 | 9.48 | 9.98 | 10.08 | 10.60 | 11.02 | 11.19 | 10.36 | 11.53 |
| (HOM0→LUM0+4) | (HOMO→LUMO+5) | (9+0WUJ←0MOH) | (L+OMUJ←OMOH) | (HOMO→LUMO+8) | (HOMO→LUMO+9) | (HOMO→LUMO+10) | (HOMO→LUMO+11) | (HOM0→LUM0+12) | (HOM0→LUM0+13) | (HOM0→LUM0+14) | (HOMO→LUMO+15) |

Table S4. Excitation energies (E_e , in eV) and oscillator strengths (*f*) for 1,3-CHD²⁺ and 1,4-CHD²⁺ calculated at various level of

theory, $(\lambda = 1.55 \text{ eV})$.

Transition	ĹŢ	f	F_{a}/λ	Ц	f	F_{a}/λ	Method
	$1,3-CHD^{2+}$	Ś		$1,4-CHD^{2+}$	r		
(HOMO→LUMO)		ı		3.68	0.0717		CASSCF(13,12)/6-311+G*
		I		3.42			CASPT2(13,12)/6-311+G*
	2.72	I		0.90			UOVGF/6-311+G*
	ı	ı		2.00			CIS/aug-cc-pvdz
	ı	I		3.38	0.2196	2.18	CISD/aug-cc-pvdz
	2.16	0.0016		2.08	0.0643	1.34	TD(B3LYP)/aug-cc-pvdz
(HOM0→LUM0,	4.16						CIS/aug-cc-pvdz
HOMO-3→LUMO)	3.50	0.1390	2.26				CISD/aug-cc-pvdz
(HOM0→LUM0+1)	5.92			8.07			CIS/aug-cc-pvdz
	5.85	0.0698		7.38	0.8495	4.76	CISD/aug-cc-pvdz
	6.15	0.0012		7.50	0.3914	4.84	TD(B3LYP)/aug-cc-pvdz
(HOM0→LUM0+2)				7.74	0.0000		TD(B3LYP)/aug-cc-pvdz
(HOM0→LUM0+3)				8.60			CIS/aug-cc-pvdz
				7.73	0.0000		CISD/aug-cc-pvdz
(9+0MU→LUMO+6)				4.30			CIS/aug-cc-pvdz
				5.09	0.0000		CISD/aug-cc-pvdz
				4.09	0.0000		TD(B3LYP)/aug-cc-pvdz
(HOMO-1→LUMO)	3.00			2.23			UOVGF/6-311+G*
	3.61			2.50			CIS/aug-cc-pvdz
	2.68	0.0009		2.35	0.0000		CISD/aug-cc-pvdz
				1.69	0.0000		TD(B3LYP)/aug-cc-pvdz
(HOMO-1→LUMO,	3.72	0.1121	2.40				TD(B3LYP)/aug-cc-pvdz
HOMO-2→LUMO)							
(HOMO-1→LUMO+1)				8.88	0.0087		CASSCF(13,12)/6-311+G*

CIS/aug-cc-pvdz			6.91			6.78	(HOMO-7→LUMO)
TD(B3LYP)/aug-cc-pvdz		0.0000	6.22		0.0012	5.27	
CISD/aug-cc-pvdz		0.0	5.36		0.0026	6.01	
CIS/aug-cc-pvdz			5.52			6.62	(OMU-6→LUMO)
TD(B3LYP)/aug-cc-pvdz		0.0000	4.56		0.0309	5.73	
CISD/aug-cc-pvdz		0.0000	5.79		0.0058	5.33	
CIS/aug-cc-pvdz			7.62			6.74	(HOMO-5→LUMO)
CASPT2(13,12)/6-311+G*			3.14				
MCSCF(13,12)/6-311+G*		0.0007	3.45				
TD(B3LYP)/aug-cc-pvdz		0.0000	3.83		0.0040	3.97	
CISD/aug-cc-pvdz		0.0000	4.49		0.0330	4.35	
CIS/aug-cc-pvdz			5.03			6.04	(HOMO-4→LUMO)
CASPT2(13,12)/6-311+G*			5.17				
TD(B3LYP)/aug-cc-pvdz	3.55	0.1482	5.50	2.8	0.0647	4.34	
CISD/aug-cc-pvdz	3.85	0.0883	5.96		0.1673	3.84	
CIS/aug-cc-pvdz			6.48			4.31	(HOMO-3→LUMO)
CASPT2(13,12)/6-311+G*			3.62				
CASSCF(13,12)/6-311+G*		0.0014	4.06				
TD(B3LYP)/aug-cc-pvdz	2.10	0.0066	3.25		0.0031	2.64	
CISD/aug-cc-pvdz	2.34	0.0142	3.62		0.0417	4.08	
CIS/aug-cc-pvdz			4.25			5.94	(HOMO-2→LUMO)
CASPT2(13,12)/6-311+G*			4.34				
CASSCF(13,12)/6-311+G*		0.0022	4.43				
TD(B3LYP)/aug-cc-pvdz					0.0423	8.03	(HOMO-4→LUMO+1)
TD(B3LYP)/aug-cc-pvdz				5.08	0.0600	7.87	(HOMO-3→LUMO+1)
TD(B3LYP)/aug-cc-pvdz		0.0000	8.50		0.0118	6.64	(HOMO-2→LUMO+1)
TD(B3LYP)/aug-cc-pvdz		0.0000	8.03				(HOMO-1→LUMO+2)
TD(B3LYP)/aug-cc-pvdz		0.0021	7.24	4.79	0.1819	7.43	
CISD/aug-cc-pvdz		0.0010	7.92				
CIS/aug-cc-pvdz			8.49				

CISD/aug-cc-pvdz	TD(B3LYP)/aug-cc-pvdz	TD(B3LYP)/aug-cc-pvdz	CIS/aug-cc-pvdz	CISD/aug-cc-pvdz	TD(B3LYP)/aug-cc-pvdz	UOVGF/6-311+G*	CIS/aug-cc-pvdz	CISD/aug-cc-pvdz	TD(B3LYP)/aug-cc-pvdz	UOVGF/6-311+G*	UOVGF/6-311+G*	UOVGF/6-311+G*	UOVGF/6-311+G*	UOVGF/6-311+G*	UOVGF/6-311+G*
0	0	0		9	0				0						
0.000	0.000	0.000		0.003	0.000				0.000						
5.92	5.49	6.45	10.00	7.64	7.16	0.62			4.87	6.66	9.45	7.32	11.30	11.20	11.33
					4.84			2.70	2.59						
0.0104	0.0042	0.0156			0.0763			0.0694	0.0852						
6.10	5.61	7.17			7.53	2.53	4.42	4.18	4.02	6.88	11.11	9.85	12.12	12.87	13.16
		(HOMO-8→LUMO)	(OMU1←9-0MOH)			(LUM0→LUM0+1)				(LUM0→LUM0+2)	(LUM0→LUMO+3)	(LUM0→LUMO+4)	(LUM0→LUM0+5)	(LUM0→LUM0+6)	(LUM0→LUM0+7)

Table S5. Relative energies of the ring opening and decomposition reactions (ΔE ,

kcal/mol) and corresponding transition states ($\Delta E(TS)$, kcal/mol) for the cyclohexadiene

radical cation, dication in the singlet state, and $C_6H_7^+$.

Isomer,	ΔΕ	$\Delta E(TS)$	Level of calculations
fragmentation channel			
$C_6H_8^+$			
1 ⁺ (1,3-CHD ⁺)	0		B3LYP/6-31G**
	0		B3LYP/6-31G** +ZPE
	0		QCISD(T)/6-311G**//QCISD/6-31G* ³⁷
	0		UMP2/6-311+G**// UMP2/6-31G* ^{39,47}
5+	23.7	$39.9(TS_{15})$	B3LYP/6-31G** + ZPE
		35.3(TS ₅₈)	
	25.7	$36.7(TS_{15})$	QCISD(T)/6-311G**//QCISD/6-31G* ³⁷
		35.5(TS ₅₈)	
8 ⁺	18.6		B3LYP/6-31G** + ZPE
	21.5	$36.9(TS_{18})$	QCISD(T)/6-311G**//QCISD/6-31G* ³⁷
9 ⁺	12.7	$30.6(TS_{89})$	B3LYP/6-31G** + ZPE
	16.8	$31.0(TS_{89})$	QCISD(T)/6-311G**//QCISD/6-31G* ³⁷
10 ⁺	9.9	$37.5(TS_{910})$	B3LYP/6-31G** + ZPE
	14.2	$48.0(TS_{910})$	QCISD(T)/6-311G**//QCISD/6-31G* ³⁷
2 ⁺ (1,4-CHD ⁺)	13.6		B3LYP/6-31G**
	11.9		B3LYP/6-31G** +ZPE
	12.0		G3MP2// B3LYP/6-31G**
	9.8		UMP2/6-311+G**//UMP2/6-31G* ^{39,47}
3+	27.4	$32.1(TS_{13})$	B3LYP/6-31G**
	24.7	$29.2(TS_{13})$	B3LYP/6-31G** +ZPE
	23.0	$26.8(TS_{13})$	G3MP2// B3LYP/6-31G**
	23.9	$35.5(TS_{13})$	UMP2/6-311+G**//UMP2/6-31G* ^{39,47}
4 ⁺	21.0	$27.6(TS_{34})$	B3LYP/6-31G**
	20.6	$25.5(TS_{34})$	B3LYP/6-31G** +ZPE
	11.0	$25.0(TS_{34})$	UMP2/6-311+G**//UMP2/6-31G* ^{39,4/}
$C_6H_8^+(1^+) \rightarrow H + C_6H_7^+$	52.4	$52.4(TS_{111})$	B3LYP/6-31G**
	45.7	$46.2(TS_{111})$	B3LYP/6-31G** +ZPE
	41.3	$41.0(TS_{111})$	G3MP2// B3LYP/6-31G**
	38.9	$49.5(TS_{111})$	UMP2/6-311+G**//UMP2/6-31G* ^{39,47}
$C_6H_8^+(1^+) \rightarrow H_2 + C_6H_6^+$	57.3	57.4	B3LYP/6-31G(d,p)
	50.9	58.8	G3MP2// B3LYP/6-31G**
$C_6H_8^+(1^+) \rightarrow C_4H_6^++C_2H_2$	78.8		B3LYP/6-31G**
	75.0	74.2	B3LYP/6-31G(d,p) +ZPE
	78.4		UMP2/6-311+G**//UMP2/6-31G* ^{39,47}
	69.4	71.7	G3MP2// B3LYP/6-31G**

Supplementary Material (ESI) for *Physical Chemistry Chemical Physics* This journal is © The Owner Societies 2007

$C_6H_8^+(1^+) \rightarrow C_2H_3^+ + C_4H_5$	113.7		B3LYP/6-31G(d,p)
$C_6H_8^+(1^+) \rightarrow CH_3^++C_5H_5$	115.3		B3LYP/6-31G(d,p)
$C_6H_7^+$			
$C_6H_7^+ \rightarrow H + C_6H_6^+$	64.9		B3LYP/6-31G(d,p) +ZPE
$C_6H_7^+ \rightarrow H^+ + C_6H_6$	176.0		B3LYP/6-31G(d,p) +ZPE
$C_6H_7^+ \rightarrow H_2 + C_6H_5^+$	63.8		B3LYP/6-31G(d,p) +ZPE
$C_6H_6^+ \rightarrow H + C_6H_5^+$	92.7		B3LYP/6-31G(d,p) +ZPE
$C_{6}H_{8}^{2+}$			
1^{++} (1,3-CHD ²⁺)	0		B3LYP/6-31G** +ZPE
	0		G3MP2// B3LYP/6-31G**
2^{++} (1,4-CHD ²⁺)	18.8		B3LYP/6-31G** +ZPE
	18.3		G3MP2// B3LYP/6-31G**
3++	-5.1		B3LYP/6-31G** +ZPE
	-5.7		G3MP2// B3LYP/6-31G**
$C_6H_8^{2+}(1^{++}) \rightarrow C_3H_3^{+} + C_3H_5^{+}$	-25.4	56.0	B3LYP/6-31G(d,p) +ZPE
	-27.3	57.1	G3MP2// B3LYP/6-31G**
$C_6H_8^{2+}(1^{++}) \rightarrow C_2H_3^{+} + C_4H_5^{+}$	-16.8	57.5	B3LYP/6-31G(d,p) +ZPE
	-19.3	56.9	G3MP2// B3LYP/6-31G**
$C_6H_8^{2+}(1^{++}) \rightarrow C_4H_3^{++} C_2H_5^{++}$	-17.0	56.8	B3LYP/6-31G(d,p) +ZPE
	-26.1	60.2	G3MP2// B3LYP/6-31G**
$C_{6}H_{8}^{2+}(1^{++}) \rightarrow C_{5}H_{5}^{+}({}^{3}D_{5h}) + CH_{3}^{+}$	-17.1		B3LYP/6-31G(d,p) +ZPE
$C_{6}H_{8}^{2+}(1^{++}) \rightarrow C_{5}H_{5}^{+}({}^{1}C_{2v}) + CH_{3}^{+}$	-6.7		B3LYP/6-31G(d,p) +ZPE
$C_6H_8^{2+}(1^{++}) \rightarrow C_5H_5^{++}CH_3^{++}$	-0.4	58.5	B3LYP/6-31G(d,p) +ZPE
	-3.5	57.6	G3MP2// B3LYP/6-31G**
$C_6H_8^{2+}(1^{++}) \rightarrow C_6H_7^{++}H^{+}$	42.3	77.2	B3LYP/6-31G(d,p) +ZPE
$C_6H_8^{2+}(1^{++}) \rightarrow C_6H_6^{++} + H_2$	57.5	97.3	B3LYP/6-31G(d,p) +ZPE
$C_2H_5^+(^1C_{2v}) \rightarrow C_2H_3^+ + H_2$	52.3		B3LYP/6-31G(d,p) +ZPE
$C_2H_5^+(^1C_{2v}) \rightarrow CH_3^++CH_2$	150.5		B3LYP/6-31G(d,p) +ZPE
$C_2H_5^+(^1C_{2v}) \rightarrow CH_3 + CH_2^+$	147.8		B3LYP/6-31G(d,p) +ZPE
$C_{3}H_{5}^{+}(^{1}C_{2v}) \rightarrow C_{3}H_{3}^{+} + H_{2}$	56.2		B3LYP/6-31G(d,p) +ZPE
$C_3H_5^+(^1C_{2v}) \rightarrow CH_2^++C_2H_3$	176.8		B3LYP/6-31G(d,p) +ZPE
$C_4H_5^+(^1\overline{C_{2v}}) \rightarrow C_4H_3^+ + H_2$	52.0		B3LYP/6-31G(d,p) +ZPE
$C_4H_5^+(^1C_{2v})\rightarrow C_2H_3^++C_2H_2$	83.1		B3LYP/6-31G(d,p) +ZPE
$C_4H_5^+(^1C_{2v}) \rightarrow ^3C_2H^++C_2H_4$	171.1		B3LYP/6-31G(d,p) +ZPE

Table S6. Relative energies (ΔE , kcal/mol) of various rotamers of hexatriene monocation with respect to the ttt rotamer 10^+ and various rotamers of hexatriene dication with respect to the ttt rotamer 54^{++} .

Isomer	ΔE	Level of calculation
5 ⁺ (ccc-HT)	14.2	ROHF/6-31G ⁴¹
	14.0	CASSCF/6-31G ⁴¹
	13.8	B3LYP/6-31G(d,p)+ZPE
8 ⁺⁺ (ccc)	14.6	B3LYP/6-31G(d,p)+ZPE
$13^{++}(ctc)$	11.0	B3LYP/6-31G(d,p)+ZPE
8 ⁺ (cct-HT)	8.5	ROHF/6-31G ⁴¹
	8.6	CASSCF/6-31G ⁴¹
	8.7	B3LYP/6-31G(d,p)+ZPE
$51^{++}(cct)$	9.0	B3LYP/6-31G(d,p)+ZPE
12 ⁺ (ttc-HT)	3.8	ROHF/6-31G ⁴¹
	3.4	CASSCF/6-31G ⁴¹
	3.7	B3LYP/6-31G(d,p)+ZPE
40^{++} (ttc)	6.0	B3LYP/6-31G(d,p)+ZPE
9 ⁺ (tct-HT)	2.3	ROHF/6-31G ⁴¹
	2.7	CASSCF/6-31G ⁴¹
	2.8	B3LYP/6-31G(d,p)+ZPE
$105^{++}(tct)$	2.8	B3LYP/6-31G(d,p)+ZPE
10 ⁺ (ttt-HT)	0	ROHF/6-31G ⁴¹
	0	CASSCF/6-31G ⁴¹
	0	B3LYP/6-31G(d,p)+ZPE
$54^{++}(ttt)$	0	B3LYP/6-31G(d,p)+ZPE

Fig. S1. Energy levels and electronic density distributions for the four highest occupied molecular orbitals in the 1,3-CHD and 1,4-CHD molecules calculated at the HF/6-311+G* level of theory.

IP=7Eph

Fig. S2. Schematic presentation of ionization energies and molecular orbital levels involved in the formation of mono- and dications of 1,3-CHD.

Fig. S3. Schematic presentation of ionization energies and molecular orbital levels involved in the formation of mono- and dications of 1,4-CHD.