Supporting Information for:

Conformational flexibility of metalloporphyrins studied by densityfunctional calculations

75

by Thorsten Wölfle^{*a*}, Andreas Görling^{*a*} and Wolfgang Hieringer^{**a*}

Computational details: Constraint definition

In order to calculate the relaxed potential energy surface scans, the following constraints have been used (cf. Figures 1,2 of the main paper). As a preliminary remark, note that the to choice of suitable constraints to enforce both fixed twist and out-of-plane tilt angles in tetra phenyl phorphyrines is a nontrivial task. The twist angle Θ is defined by fixing the rotation of two dihedral angles between the phenyl groups and the porphyrin ring. These angles are the acute dihedral angles

- 15 defined by the bond connecting the peripheral phenyl ring to the porphyrin core and the adjacent carbon atoms. Thus, two dihedral angles per phenyl ring (hence a total of eight dihedral angles in each M-TPP structure) are fixed. To describe the tilt angle Φ , in total four additional angles are fixed, set up by the
- ²⁰ central metal atom and the atoms of the bond between phenyl group and porphyrin ring. Thus, a total of twelve constraints is introduced per molecule.

Figure S1: Illustration of the applied constraints (see text).

- ⁴⁰ However, when choosing the C-C-M angle for tilting the phenyl rings, the subsequent constrained geometry optimization will lift the metal atom from the TPP plane in an unphysical way. To circumvent this error we reoptimized the cartesian coordinates of the central atom in cartesian
- ⁴⁵ coordinates while the remaining atoms were fixed, resulting in a gain in energy of 50 kJ/mol in worst case. The numbers quoted in the paper all have been corrected in this manner.

However, note that the angles that can be measured in the ⁵⁰ structures depend on the order in which the tilting and twisting operations are applied. When the tilt angle is applied first it is possible to measure the twist angle in the final

structure. When twisting the phenyl ring first and then tilting it, one loses the reference point of measuring the twist angle, ⁵⁵ because the atoms fixing the tilt angle are not lying in the rotational axis of the phenyl ring.

Further note that the above procedure still leads to small ⁶⁰ artificial distortions of the peripheral phenyl groups at extreme out of-plane angles (such as $\Phi = 140^{\circ}$). We have checked (and corrected) the error in energy due to these distortions by additional geometry optimizations with cartesian constrains. For the "worst" case (tilt angle 140° and ⁶⁵ twist angle 90°) we found that the ensuing error is expected below 35 kJ/mol for each M-TPP, i. e. the error of the initial procedure is less that 10 kJ/mol for each phenyl group considered. (However, tilt angles as low as 140° may be considered rather unphysical anyway.)

Figures S2a,b,c contain illustrations of the computed potential energy surfaces (BP/SVP level of theory) for ZnTTBPP, CoTPP, and CoTTBPP, in analogy to Figure 2 of the main paper.

Figure S2a: Relaxed potential energy surface plot of CoTPP; kJ/mol.

Figure S2b: Relaxed potential energy surface plot of ZnTTBPP; kJ/mol.

Figure S2c: Relaxed potential energy surface plot of CoTTBPP; kJ/mol.

5

Figure S3 shows an geometries corresponding the depression ¹⁰ in the high-energy region of the potential energy surface plots shown in Figure 2 and S2.

Figure S3: Relaxed structures with angles fixed at $\Theta = 10^{\circ}$, $\Phi = 150^{\circ}$ (top image) and $\Theta = 10^{\circ}$, $\Phi = 180^{\circ}$ (bottom) to illustrate the depression in the high-energy region of the potential energy surface plots shown in Figures 2 and S2.

XYZ coordinates of the fully optimized structure of ZnTPP at the BP/TZVP level of theory: 20 77

	Energ	y = -3693	.001	40178	35		
	Ν	2.055413	2	-0.02	232713	-0.0	317365
	С	2.865573	3	-1.14	107960	0.0	229544
	С	4.248494	4	-0.73	312538	0.1	330441
25	С	4.263936	1	0.63	350013	0.1	328223
	С	2.890628	34	1.0	756712	0.0	226400
	С	2.425202	4	-2.48	307073	0.0	002007
	С	3.471542	8	-3.5	509541	0.0	004219
	С	4.320594	3	-3.72	257711	-1.1	064707
30	С	5.296181	.1	-4.72	265251	-1.1	071713
	С	5.442625	2	-5.50	568032	0.0	009400
	С	4.605548	1	-5.40	012485	1.1	087818
	С	3.626947	4	-4.40	034408	1.1	075676
	С	2.480701	.1	2.42	252028	-0.0	003486
35	С	1.140790	16	2.80	655733	-0.0	231062
	Ν	0.023266	2	2.05	554136	0.0	315971
	C	-1.075676	57	2.89	906288	-0.0	227788
	С	-0.635007	3	4.20	539359	-0.1	329685
	С	0.731247	6	4.24	184935	-0.1	331956
40	Zn	-0.00003	9	-0.00	000031	-0.0	000519
	Ν	-0.023272	2	-2.0	554188	0.0	316149
	С	-1.140797	7	-2.80	555794	-0.0	230632
	C	-0.731256		-4.24	185005	-0.1	331534
	C	0.634998	34	-4.20	539424	-0.1	329501
45	C	1.075669	18	-2.8	906345	-0.0	227765
	C	-2.425209	0	2.48	307023	0.0	002309
	C	-3.4/1548	56	3.55	509499	0.0	005185
	C	-3.626897	8	4.40	34187	1.1	076856
	C	-4.605468	6	5.40	JI2552	1.1	089471
50	C	-5.442583	5 <u>1</u>	5.50	068459 065755	0.0	011390
	d	-5.296205) T	4.7.	265/55	-1.1	069870
	c	-4.320648	ש קו	3.1.	72 / AT 3	-1.1	
	C	-2.480/08) / 	-2.4.	202086 71 E 4 0 0	-0.0	004500
	C	-3.350955	00	-3.4 1 2'	/15492 205712	-0.0	064676
55	C	-3.125142	. 9	-4.3	202113	1.1	0040/6

	С	-4.7265213	-5.2961332	1.1072362
	С	-5.5668601	-5.4425747	-0.0008294
	С	-5.4013162	-4.6055458	-1.1087094
	С	-4.4034777	-3.6269764	-1.1075671
5	С	3.5509475	3.4715435	-0.0005347
	С	4.4034716	3.6269481	-1.1076514
	С	5.4013116	4.6055158	-1.1088113
	С	5.5668577	5.4425636	-0.0009460
	С	4.7265196	5.2961423	1.1071227
10	С	3.7257349	4.3205871	1.1063686
	Ν	-2.0554209	0.0232664	-0.0317016
	С	-2.8655801	1.1407915	0.0229968
	С	-4.2484990	0.7312500	0.1331174
	С	-4.2639415	-0.6350052	0.1329043
15	С	-2.8906355	-1.0756758	0.0226994
	Н	-5.0956584	1.4040566	0.2194981
	Н	-5.1260967	-1.2885190	0.2190808
	Н	-1.4040636	-5.0956625	-0.2195031
	Н	1.2885115	-5.1260992	-0.2191135
20	Η	5.0956558	-1.4040597	0.2194102
	Н	5.1260923	1.2885155	0.2189815
	Н	1.4040527	5.0956550	-0.2195608
	Н	-1.2885218	5.1260920	-0.2191271
	Η	3.0751649	4.2029562	1.9748770
25	Н	4.2710148	2.9790435	-1.9760151
	Н	4.8523533	5.9412481	1.9787064
	Η	6.0488770	4.7166494	-1.9805700
	Н	6.3472352	6.2055519	-0.0011025
	Η	2.9790080	-4.2709876	1.9759064
30	Η	4.2029379	-3.0752555	-1.9750168
	Н	4.7166816	-6.0487840	1.9805627
	Н	5.9412903	-4.8523855	-1.9787487
	Н	6.2056646	-6.3471308	0.0011541
	Н	-3.0751807	-4.2029153	1.9749790
35	Η	-4.2710199	-2.9790887	-1.9759438
	Н	-4.8523460	-5.9412317	1.9788267
	Н	-6.0488830	-4.7166946	-1.9804653
	Н	-6.3472377	-6.2055629	-0.0009714
	Н	-2.9789481	4.2709193	1.9760093
40	Н	-4.2030654	3.0752608	-1.9748781
	Н	-4.7165475	6.0487872	1.9807374
	Н	-5.9413394	4.8524683	-1.9785414
	Н	-6.2056000	6.3471954	0.0013905

45

XYZ coordinates of the fully optimized structure of CoTPP at the BP/TZVP level of theory: 77

	//										
50	Energy	/ = -	3296.	3886	8998	2 5	52=0.	.7621	049	5	
	N	1.95	89618	-	0.17	527	732	0.	031	90(08
	С	2.70	41041	-	1.34	050	070	-0.	079	675	50
	С	4.10	02640	-	1.07	151	L05	Ο.	154	012	24
	С	4.21	12555		0.26	171	L82	Ο.	412	25	74
55	С	2.88	92891		0.82	367	719	Ο.	294	625	51
	С	2.19	31795	-	2.61	834	183	-0.	323	556	57
	С	3.15	67505	-	3.73	781	L62	-0.	555	205	58
	C	3.92	11972	-	3.78	167	792	-1.	734	040	00
	С	4.82	76810	-	4.82	156	595	-1.	958	600	03
60	С	4.98	91502	-	5.83	152	226	-1.	005	132	22
	С	4.23	86442	-	5.79	504	192	Ο.	174	300	02
	С	3.32	87347	-	4.75	5777	789	Ο.	396	800	04
	C	2.61	83772		2.19	317	790	Ο.	323	198	39
	C	1.34	05156		2.70	410	06	Ο.	079	410	58
65	Ν	0.17	52675		1.95	895	545	-0.	032	001	15
	С -	0.82	37072		2.88	927	749	-0.	294	634	18
	С -	0.26	17689		4.21	123	398	-0.	412	354	10
	C	1.07	14935		4.10	025	519	-0.	154	279	97
	Co	0.00	00011	-	0.00	000	081	-0.	000	00	76
70	N -	-0.17	52635	-	1.95	897	719	-0.	032	052	24
	С -	-1.34	04943	-	2.70	412	295	Ο.	079	492	27
	С -	-1.07	14962	-	4.10	026	578	-0.	154	304	45
	C	0.26	17229	-	4.21	123	808	-0.	412	614	12

C	0.8236719	-2.8892691	-0.2949063
75 C	-2.1932166	2.6183596	-0.3230799
С	-3.1568127	3.7378631	-0.5544796
С	-3.3286599	4.7576973	0.3976898
С	-4.2386105	5.7949909	0.1754655
С	-4.9892784	5.8316256	-1.0038593
80 C	-4.8279234	4.8218168	-1.9574989
С	-3.9214086	3.7818944	-1.7332076
C	-2.6183332	-2.1932187	0.3234137
C	-3.7378029	-3.1568102	0.5549825
C	-3.7816790	-3.9213660	1.7337434
85 C	-4.8215871	-4.8278515	1.9582179
C	-5 8315442	-4 9892109	1 0047362
C	-5 7950490	-4 2386066	-0 1746335
c	-4 7577624	-3 32869/9	-0 3970470
C	3 7378750	3 1567558	0.55/6977
	4 7577005	3.1307330	0.3540977
90 C	4.7377283	4 0206102	-0.3974342
d	5.7950270	4.2300103	-0.1/50950
d	5.8316355	4.9891/13	1.0042985
C	4.821/942	4.82/7442	1.95/8918
	3.7818804	3.9212458	1./334966
95 IN	-1.9589624	0.1/52533	0.0321299
C	-2.7041187	1.3404989	-0.0792597
C	-4.1002517	1.0714805	0.1545501
C	-4.2112146	-0.2617706	0.4126902
C	-2.8892574	-0.8237111	0.2948927
100 H	-4.8833846	1.8225517	0.1459840
Н	-5.1053644	-0.8274966	0.6524346
Н	-1.8225642	-4.8834027	-0.1456307
Н	0.8274239	-5.1053840	-0.6524042
Н	4.8833924	-1.8225848	0.1453053
105 H	5.1054340	0.8274229	0.6519456
Н	1.8225661	4.8833832	-0.1456773
Н	-0.8275032	5.1054123	-0.6519948
Н	2.9954068	3.7937046	2.4795466
Н	4.7256734	2.7504146	-1.3225446
110 H	4.8440161	5.4076051	2.8824741
Н	6.5748528	4.3644810	-0.9285297
Н	6.6426309	5.6984880	1.1783982
Н	2.7505001	-4.7258318	1.3219423
Н	3.7936384	-2.9951073	-2.4799831
115 H	4.3645549	-6.5749589	0.9276414
Н	5.4074956	-4.8436862	-2.8832141
Н	5.6984569	-6.6424993	-1.1793598
н	-2.9951035	-3.7938939	2.4796976
н	-4.7257958	-2.7503822	-1.3221391
120 H	-4.8437136	-5.4077560	2.8827752
H	-6.5749501	-4.3644464	-0.9279955
н	-6.6425463	-5.6985024	1.1789073
н	-2.7502732	4.7256380	1.3227326
н	-3.7939424	2,9954326	-2.4792828
125 H	-4.3644275	6.5747886	0.9289382
125 II U	-5 4078450	4 84/0772	-2 8820/17
и Ц	-5 6986266	6 6426132	-1 1778669

¹³⁰ Constraint example: XYZ coordinates of an optimized structure of ZnTPP with twist and tilt angles constrained to Θ = 40° and Φ = 160°; BP/SVP level of theory: 77

	Energy	r = -3690.722	285772	
135	N	2.0951670	0.2521789	-0.6015728
	С	3.0170687	-0.7524225	-0.3678476
	С	4.2535435	-0.1720887	0.1266846
	С	4.0813627	1.1892979	0.1378701
	С	2.7386197	1.4511923	-0.3502864
140	С	2.7290881	-2.1399279	-0.4870402
	С	3.7352126	-3.1674992	-0.0936141
	С	5.1213217	-3.0289537	-0.3722167
	С	6.0632680	-3.9496590	0.1094736
	С	5.6558674	-5.0314088	0.9087673
145	С	4.2923793	-5.1805503	1.2141104
	С	3.3508702	-4.2604700	0.7296595

	С	2.1141036	2.7247051	-0.4502438
	С	0.7318561	2.8934315	-0.7764653
	Ν	-0.2727306	1.9638910	-0.5801510
	С	-1.4729512	2,6150881	-0.8003372
c	c	-1 2114854	3 9588818	-1 2672218
5	c	0 1545617	4 1214207	1 2522407
		0.1545617	4.1314297	-1.2522407
	zn	-0.0229393	-0.0158008	-0.5908285
	Ν	0.2269808	-1.9949170	-0.6058406
	С	-0.7739981	-2.9212000	-0.8331849
10	С	-0.1884211	-4.1522536	-1.3169637
	С	1.1776651	-3.9796910	-1.3059715
	С	1.4308900	-2.6430500	-0.8146938
	С	-2.7766739	2.1072929	-0.5032709
	C	-3 7891257	3 1292335	-0 1113981
16	C	-3 /185292	1 2089165	0.7354041
15	c	4 2077502	E 100/701	1 0175270
	C	-4.3677593	5.1224701	1.21/53/9
	C	-5.7256192	4.9/95398	0.8860663
	С	-6.1199060	3.9102046	0.0630052
	С	-5.1702947	2.9961941	-0.4161578
20	С	-2.1618486	-2.7572444	-0.5287231
	С	-2.8843132	-4.0036187	-0.1459696
	С	-2.2514467	-4.9641718	0.6885787
	С	-2.9388919	-6.0920946	1.1607541
	С	-4 2902983	-6.2915776	0.8323054
25	c	-4 9438761	-5 3463973	0 0227493
25	c	4.9450701	1 2170061	0.0227493
	d	-4.2301001	-4.21/0901	-0.4403703
	C	2.8305195	3.9652222	-0.0381406
	C	4.2073323	4.1828158	-0.3126105
	С	4.8872269	5.3047084	0.1831501
30	С	4.2203432	6.2393461	0.9940797
	С	2.8634392	6.0361459	1.2970979
	С	2.1838800	4.9148664	0.7983170
	Ν	-2.1409913	-0.2828902	-0.6438484
	С	-3.0668442	0.7181732	-0.4110130
35	С	-4.3119459	0.1306915	0.0528402
55	c	-4 1398997	-1 2307111	0 0463921
	c	2 7005150	1 /052252	0.0105521
	с т	-2.7883130	-1.4055555	-0.4217592
	п 	-5.1987491	0.0000020	0.4023546
	н	-4.8641880	-1.9762683	0.3894018
40	Н	-0.7515616	-5.0321046	-1.6517357
	Η	1.9474311	-4.6906781	-1.6300262
	Η	5.1342834	-0.7155580	0.4833081
	Η	4.7992283	1.9296204	0.5048735
	Н	0.7232519	5.0160562	-1.5642613
45	Н	-1.9756356	4.6747274	-1.5938715
	Н	1.1358029	4.7463030	1.0892688
	н	4 7339738	3 4988486	-0 9961371
	н	2 3286098	6 7496837	1 9454044
	и П	E 0/07002	E /EE10E/	0 0757692
	п 11	3.9407093	7 1106010	1 20777002
50	н	4./5496/6	7.1196218	1.38///98
	Н	2.2951829	-4.3645144	1.0247696
	Η	5.4560004	-2.2258796	-1.0473001
	Η	3.9573809	-6.0136469	1.8540204
	Η	7.1276428	-3.8246274	-0.1509387
55	Н	6.3971011	-5.7534693	1.2922285
	Н	-1.2084737	-4.7991426	0.9999311
	Н	-4.7715729	-3.5248022	-1.1299063
	н	-2.4140966	-6.8142552	1.8087308
	н	-6 0006059	-5 4936804	-0 25617/4
<i>(</i> 2	т П	4 0211524	7 1771004	1 2051044
60	п 	-4.0311534	-/.1/120/	1.2051846
	н	-2.3681958	4.3072756	1.0497041
	Н	-5.4936431	2.2039402	-1.1090928
	Н	-4.0425136	5.9451252	1.8761960
	Н	-7.1795331	3.7902125	-0.2180806
65	Н	-6.4726304	5.6956479	1.2672510

Friedriche-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany. Fax: ++49 9131 8527736; Tel: ++49 9131 75 8528646; E-mail: hieringer@chemie.uni-erlangen.de

Further data can be obtained from the authors upon request.

⁷⁰

^a Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie and Interdisciplinary Center for Interface-Controlled Processes,