SUPPORTING INFORMATION

Oxygen Carriers Based on Electrochemically Reduced Trinitroarenes

Iluminada Gallardo^{*} and Gonzalo Guirado

[*]Prof. I.Gallardo, Dr. G.Guirado

Departament de Química, Universitat Autònoma de Barcelona

08193-Bellaterra (Barcelona). Spain

Phone: 00 34 9358121 37 ; Fax: 00 34 935812920

e-mail: <u>Iluminada.Gallardo@uab.es</u>

Figure S1. Cyclic voltammetry (CV) 4.0 mM in DMF + 0.1M nBu₄NBF₄ at 10°C. Scan rate 1.0 V/s, glassy carbon disk electrode (0.05 mm diameter). a) of **TNT** solution *under Ar atmosphere* b) of a **TNT** electrolyzed solution at -0.75 V after 1F *under Ar atmosphere* (σ^{H} -dimer) c) of a **TNT** solution after the addition of equimolecular amount of **TDAE** (π -dimer, π -(TNA)²⁻ [TDAE]²⁺) under argon atmosphere d) of a σ^{H}_{0-0} -adduct(**TNT**) solution *under atmosphere argon atmosphere* (σ^{H}_{0-0} -adduct, (**TNT**) [TDAE]²⁺, formed by a oxygen purged solution of π -(TNT)[TDAE]²⁺) in the potential range: 0.00/1.50/-1.00/0.00 V.

Figure S2. Cyclic voltammetry (CV) 4.0 mM in DMF + 0.1M nBu₄NBF₄ at 10°C. Scan rate 1.0 V/s, glassy carbon disk electrode (0.05 mm diameter). a) of **TNA** solution *under Ar atmosphere* b) of a **TNA** electrolyzed solution at -0.75 V after 1F *under Ar atmosphere* (σ^{H} -dimer) c) of a **TNA** solution after the addition of equimolecular amount of **TDAE** (π -dimer, π -(TNA)²⁻ [TDAE]²⁺) *under argon atmosphere* d) of a σ^{H}_{0-0} -adduct(TNA) solution under *atmosphere argon atmosphere* (σ^{H}_{0-0} -adduct (**TNA**)[TDAE]²⁺ formed by a oxygen purged solution of π -(TNA)[TDAE]²⁺) in the potential range: 0.00/1.50/-1.00/0.00 V

Figure S3. In situ UV/Vis spectra (Optical Density) O.D. vs. time (s) during a potential step experiment (E_1 =0.00 V; E_2 = -0.90 V; E_3 = 0.00 V) of 5.10⁻⁴ M 2,4,6-trinitrotoluene (**TNT**) in 0.1 M TBABF₄ (acetonitrile, ACN) in the UV/Vis LIGA cell.

Figure S4. In situ UV/Vis spectra (Optical Density) O.D. vs. time (s) during a potential step experiment (E_1 =0.00 V; E_2 = -0.90 V; E_3 = 0.00 V) of 5.10⁻⁴ M 2,4,6-trinitroanisole (**TNA**) in 0.1 M TBABF₄ (acetonitrile, ACN) in the UV/Vis LIGA cell.

Figure S5. IR spectrum of σ^{H}_{0-0} -adduct (TNA) (dark blue line) and σ^{H} -dimer (TNA) (pink line).

Figure S6. IR spectrum of: σ^{H}_{O-O} -adduct (5) (dark blue line), σ^{H}_{O-O} -adduct (TNT) (pink line) and σ^{H}_{O-O} -adduct (TNA) (dark green line).

Table ESI-1. Characterization of Compounds **3** (σ^{H}_{C-C} -adduct), **4** ($\sigma^{H}_{N=N}$ -adduct) and **5** (σ^{H}_{O-O} -adduct) depicted in Scheme 1.

Physical data	$\textbf{3}~(\sigma^{\text{H}}_{\text{ C-C}}\text{-adduct})$	$\textbf{4}~(\sigma^{H}_{\text{ N=N}}\text{ -adduct})$	5 (σ^{H}_{O-O} -adduct)
¹ H NMR (250 MHz, CD ₃ CN, r.t., TMS)	δ =8.15 (s) and 5.53(s) ppm (2:1)	δ =8.40 (s) and 6.41 (s) ppm (2:1)	δ =8.64 (s) and 6.72 (s) ppm (2:1)
Caralia	0.56 V vs. SCE (irreversible)	1.09 V vs. SCE (pseudo reversible wave)	1.03 V vs. SCE (irreversible)
Cyclic Voltammetry	(In the reverse scan we obtain the reduction of the corresponding 1,3,5- trinitrobenzene)	(In the reverse scan we ONLY obtain the reduction of the corresponding 1,3,5- trinitrobenzene)	(In the reverse scan, it is possible to detect the reduction wave from the liberated O_2 at -0.92 V vs. SCE as well as the corresponding to 1,3,5- trinitrobenzene)
IR	-	$v_{N=N} (1731 \text{ cm}^{-1})$	$v_{o-o} (1060 \text{ cm}^{-1})$
		NEW band assigned to the azo group stretching mode	NEW band assigned to the O-O stretch vibration
Elemental Analysis (EA)	(C28H46N8O12):	(C28H46N10O12):	(C28H46N8O14):
	N 16.4, C 49.0, H 6.7	It has not been able to get	Theoretical
	found:	pure nitrogenated	N 15.6, C 46.9, H 6.4
	N 15.9, C 48.6, H 6.7	experimental nitrogen	found:
		the EA was performed was higher than in compounds 3 and 5 .	N 15.2,C 47.4,H 6.2.
ESI-	Compound 3 (σ^{H} _{C-C} -adduct) m/z (I %)	
(Main Peaks)	$[(C_6H_3)_2]^{2-}$	213 (35%)	
	$[((C_6H_3)(NO_2)_2(NO) + 2H]^{-1}$	199(61%)	
	$[(C_6H_3)(NO_2)_2(N) + 2H]^{-1}$	183(100%)	
	$[(C_6H_3)(NO_2)_2 + H]^-$	168(5%)	

MW: 686.7

$[((C_{6}II_{3})(I_{1}O_{2})_{3}I_{1}V_{2} + 2I_{1}EI_{4} - II]]$	/15 (100/0)
$[((C_6H_3)(NO_2)_3N)_2 + 2NEt_4 - H]^{2-1}$	357(99%)
$[((C_6H_3)(NO_2)_3N)_2]^-$	454(6%)
$[(C_6H_3)(NO_2)_3N)_2 + 2H]^{-1}$	456(29%)

Compound 5 (ESI (-)/MS) : Fresh Solution. Color: Red

List of the Main Peaks:

m/z	I 1012	I(%)
589.7	1912	4
555.6	3299	7
555.8	3492	7
556.8	1033	2
457.2	2815	6
225.9	13486	28
226.8	3471	7
227.8	2815	6
229.8	48969	100
230.8	3841	8
231.8	1134	2
212.8	15190	31
213.8	6997	14
214.8	1342	3
198.8	40643	83
199.8	3385	7
201.8	1444	3
182.8	22535	46
183.8	3069	6
184.8	2005	4
185.8	1263	3