Supporting information

Table S1: Summary	of calculated	(GGA-PW91)	properties	of atomic	O adsorption	on Pt _x
and Pt(111).						

cluster	magnetic moment of system	O binding geometry	ZPE- corrected binding energy (eV)	d _{Pt-O} (Å)	(cm^{-1})	Bader charge of O (e)
Pt-O	2	-	-1.63	1.762	812	-0.48
Pt ₂ -O	2	apex	-1.41	1.766	855	-0.61
Pt ₃ -O	2	apex	-1.55	1.768	855	-0.65
Pt ₄ -O	2	apex	-1.73	1.772	860	-0.65
Pt ₅ -O	4	apex	-1.75	1.767	817	-0.65
Pt ₁₀ -O	4	apex	-1.07	1.774	869	-0.69
Pt(111)-O ^{<i>a</i>}	0	fcc	-1.09	2.058	432	-0.80

See Figure 1 for snapshots of the clusters. The free O atom has a magnetic moment of 2 in its ground state.

^{*a* 1}/₁₆ ML coverage.

cluster	magnetic moment of system	O ₂ binding geometry	ZPE- corrected binding energy (eV)	d ₀₋₀ (Å)	ν ₀₋₀ (cm ⁻¹)	Bader charge of O ₂ (<i>e</i>)
O ₂	2	-	-5.65 ^a	1.237	1571	-
Pt-O ₂	2	bent	-1.62	1.294	1203	-0.34
Pt ₂ -O ₂	2	η^2 -O,O	-1.43	1.338	1126	-0.44
Pt ₃ -O ₂	0	μ - 0,0	-1.63	1.376	923	-0.58
Pt ₄ -O ₂	0	μ - 0,0	-2.44	1.409	793	-0.68
Pt ₅ -O ₂	2	μ-0,0	-2.13	1.420	743	-0.67
Pt_{10} - O_2	4	μ-0,0	-1.33	1.425	729	-0.67
Pt(111)-O ₂ ^b	0	top-bridge-top	-0.61	1.364	853	-0.60

Table S2: Summary of calculated (GGA-PW91) properties of molecular oxygen (O_2) adsorption on Pt_x and Pt(111).

The relevant properties of the free O_2 molecule are included for comparison. See Figure 1 for snapshots of the clusters.

^{b 1}/₁₆ ML coverage.

^a O₂ bond energy.

cluster	magnetic moment of system	CO/NO binding geometry	ZPE- corrected binding energy (eV)	∠ Pt-Y-O (°)	d _{Pt-Y} (Å)	d _{y-0} (Å)	ν _{Y-0} (cm ⁻¹)	$ \frac{\nu_{\text{Pt-YO}}}{(\text{cm}^{-1})} $	Bader charge of CO/NO (e)
СО	0	-	-10.70 ^a	-	-	1.144	2118	-	-
Pt-CO	0	linear	-3.46	180	1.772	1.165	2028	558	-0.06
Pt ₂ -CO	0	bridging	-2.95	138	1.915	1.192	1836	525	-0.28
Pt ₃ -CO	2	linear	-2.62	178	1.844	1.167	2019	527	-0.25
Pt ₄ -CO	2	linear	-2.62	176	1.843	1.167	1996	518	-0.23
Pt ₅ -CO	4	linear	-2.58	179	1.840	1.168	1992	519	-0.20
Pt ₁₀ -CO	6	linear	-2.01	179	1.830	1.166	2000	505	-0.20
Pt(111)-CO ^b	0	perp. atop	-1.65	180	1.862	1.157	2054	510	-0.15
NO	1	-	-6.37 ^a	-	-	1.175	1883	-	-
Pt-NO	1	bent	-3.19	132	1.816	1.189	1736	624	-0.24
Pt ₂ -NO	1	linear	-3.26	174	1.773	1.179	1875	578	-0.30
Pt ₃ -NO	1	linear	-3.10	178	1.773	1.182	1842	559	-0.36
Pt ₄ -NO	1	linear	-3.27	177	1.770	1.186	1833	595	-0.36
Pt ₅ -NO	3	linear	-3.04	176	1.783	1.183	1837	571	-0.29
Pt ₁₀ -NO	7	bent	-1.93	135	1.866	1.192	1724	580	-0.22
Pt(111)-NO ^b	0	perp. fcc	-1.89	-	2.083	1.215	1502	331	-0.50

Table S3: Summary of calculated (GGA-PW91) properties of CO and NO adsorption on Pt_x clusters and Pt(111).

The relevant properties of the free CO and NO molecules are included for comparison. "Y" = C or N. "perp." = perpendicular. See Figure 3 for snapshots of the clusters.

^a CO/NO bond energy.

^{b 1}/₁₆ ML coverage.

cluster	magnetic moment of system	diff. V _{C-0} (cm ⁻¹)	diff. VPt-CO (cm ⁻¹)	diff. V ₀₋₀ /V _{Pt-0} (cm ⁻¹)	Bader charge diff. of CO (e)	Bader charge diff. of O/O ₂ /2O (<i>e</i>)
O ₂ -Pt-CO	2	35	3	48	-0.08	0.03
O ₂ -Pt ₂ -CO	0	44	-22	72	0.11	0.06
O ₂ -Pt ₃ -CO	0	6	1	356	0.03	0.20
O ₂ -Pt ₄ -CO	0	11	-10	-15	0.01	0.04
O ₂ -Pt ₅ -CO	2	20	18	-6	0.01	0.00
O ₂ -Pt ₁₀ -CO	4	9	43	91	0.05	0.03
Pt(111)-CO+O ₂ ^{<i>a</i>}	0	-11	10	-6	0.13	0.04
2O-Pt-CO	2	49	-58		0.02	0.22
2O-Pt ₂ -CO	0	207	-20		0.13	0.09
2O-Pt ₃ -CO	0	8	-22		0.08	0.03
2O-Pt ₄ -CO	0	44	9		0.10	-0.07
2O-Pt ₅ -CO	2	49	-11		0.12	0.00
2O-Pt ₁₀ -CO	2	17	20		0.07	-0.03
Pt(111)-CO+2O ^b	0	-11	-20		0.03	-0.01
O-Pt-CO	2	16	-76	-125	-0.04	-0.01
O-Pt ₂ -CO	2	194	29	-204	0.10	-0.04
O-Pt ₃ -CO	2	15	-2	-48	0.05	0.03
O-Pt ₄ -CO	2	37	0	-17	0.05	0.03
O-Pt ₅ -CO	2	7	-6	53	0.05	0.04
O-Pt ₁₀ -CO	2	18	20	-40	0.01	0.01
Pt(111)-CO+O ^a	0	-7	-43	85	0.05	0.05
cluster	magnetic moment of system	diff. V _{asOCO} (cm ⁻¹)	diff. V _{Pt-O} (cm ⁻¹)	Bader charge diff. of CO ₂ (<i>e</i>)	Bader charge diff. of O (e)	
O-Pt-CO ₂	2	104	-29	0.05	-0.04	
O-Pt ₂ -CO ₂	0	-11	-151	-0.01	-0.10	
O-Pt ₃ -CO ₂	2	32	-34	0.05	-0.14	
O-Pt ₄ -CO ₂	2	28	-30	0.05	0.03	
O-Pt ₅ -CO ₂	0	5	64	0.05	0.02	
O-Pt ₁₀ -CO ₂	2	6	12	0.04	0.02	
Pt(111)-CO ₂ +O ^a	0	0	0	-0.03	0.06	

Table S4: Summary of calculated (GGA-PW91) properties of CO co-adsorbed with O_2 , 2O, and O and CO_2 co-adsorbed with O on Pt_x (x = 1-5 and 10) and Pt(111).

Differences in vibrational frequency and Bader charge are defined as (co-adsorbates - individual adsorbates). Thus positive values indicated co-adsorbates having blueshifted frequencies or possessing less charge. See Figures 4 and 6 for snapshots of the clusters.

 $^{a\ 1}/_{16}$ ML coverage each for O, O2, CO, and CO2. $^{b\ 1}/_{16}$ ML coverage for CO and $^{1}/_{8}$ ML coverage for O.

cluster	magnetic moment of system		diff. V _{Pt-NO} (cm ⁻¹)	diff. V ₀₋₀ / V _{Pt-0} (cm ⁻¹)	Bader charge diff. of NO (e)	Bader charge diff. of O (e)
O ₂ -Pt-NO	1	156	2	-13	0.05	-0.08
O ₂ -Pt ₂ -NO	1	-37	56	78	0.06	0.09
O ₂ -Pt ₃ -NO	1	-97	72	-46	0.10	0.03
O ₂ -Pt ₄ -NO	1	8	-4	38	0.07	0.01
O ₂ -Pt ₅ -NO	3	11	10	72	0.04	0.04
O ₂ -Pt ₁₀ -NO	3	35	-31	21	-0.03	0.00
$Pt(111)-NO+O_2^{a}$	0	36	11	46	0.04	0.06
20-Pt-NO	1	31	-112		0.25	0.25
2O-Pt ₂ -NO	1	37	11		0.07	0.04
2O-Pt ₃ -NO	1	45	25		0.12	0.01
2O-Pt ₄ -NO	1	-102	-12		0.12	-0.04
2O-Pt ₅ -NO	1	-25	1		0.02	0.01
2O-Pt ₁₀ -NO	1	56	-33		0.01	-0.04
Pt(111)-NO+2O ^b	0	31	14		0.07	-0.01
O-Pt-NO	1	152	-43	-9	-0.05	-0.01
O-Pt ₂ -NO	1	8	19	-179	-0.03	-0.11
O-Pt ₃ -NO	1	46	20	-37	0.11	0.08
O-Pt ₄ -NO	1	8	-43	-49	0.08	0.06
O-Pt ₅ -NO	1	6	-6	17	0.04	0.04
O-Pt ₁₀ -NO	3	19	-27	-20	0.02	0.02
Pt(111)-NO+O ^{<i>a</i>}	0	32	-10	-7	0.03	0.06
cluster	magnetic moment of system	diff. Vasono (cm ⁻¹)	diff. V _{Pt-O} (cm ⁻¹)	Bader charge diff. of NO ₂ (<i>e</i>)	Bader charge diff. of O (e)	
O-Pt-NO ₂	1	183	9	0.01	-0.10	
O-Pt ₂ -NO ₂	1	34	-141	-0.04	-0.04	
O-Pt ₃ -NO ₂	1	-274	0	-0.04	0.05	
O-Pt ₄ -NO ₂	1	-12	-24	0.06	0.06	
O-Pt ₅ -NO ₂	3	7	4	0.02	0.03	
O-Pt ₁₀ -NO ₂	3	44	-28	-0.10	0.03	
Pt(111)-NO ₂ +O ^{<i>a</i>}	0	14	-10	0.03	0.06	_

Table S5: Summary of calculated (GGA-PW91) properties of NO co-adsorbed with O₂, 2O, and O and NO₂ co-adsorbed with O on Pt_x (x = 1-5 and 10) and Pt(111).

Differences in vibrational frequency and Bader charge are defined as (co-adsorbates - individual adsorbates). Thus positive values indicated co-adsorbates having blueshifted frequencies or possessing less charge. See Figures 4 and 6 for snapshots of the clusters.

 $^{a\ l}/_{16}$ ML coverage each for O, O_2, NO, and NO_2. $^{b\ l}/_{16}$ ML coverage for NO and $^{l}/_{8}$ ML coverage for O.

Table S6: Summary of calculated (DF)	Г/PW91) properties of CO ₂ and C	nd NO ₂ adsorption on Pt_x ($x = 1$	-5 and 10) and Pt(111).

cluster	magnetic moment of system	CO ₂ /NO ₂ binding geometry	ZPE- corrected binding energy (eV)	∠ O-Y- O (°)	d _{Y-O} (Å)	ν _{Y-0} (cm ⁻¹)	v_{sY-0} (cm ⁻¹)	Bader charge of CO ₂ /NO ₂ (e)
CO ₂	0	-	-3.24 ^a	180	1.173	2357	1325	-
Pt-CO ₂	0	<i>η</i> ² -C,O	-0.92	145	1.290; 1.193	1919	1092	-0.32
Pt ₂ -CO ₂	2	η²-C,O	-0.62	148	1.261; 1.193	1966	1143	-0.33
Pt ₃ -CO ₂	2	η²-C,O	-0.74	147	1.270; 1.199	1935	1138	-0.36
Pt ₄ -CO ₂	2	μ-С,О	-0.81	136	1.279; 1.226	1716	1146	-0.48
Pt ₅ -CO ₂	4	μ - C,O	-0.89	134	1.268; 1.234	1685	1191	-0.51
Pt ₁₀ -CO ₂	6	μ-С,О	-0.11	132	1.282; 1.227	1693	1175	-0.51
Pt(111)-CO ₂ ^b	0	-	0.00	180	1.173	2357	1325	0
NO_2	1	-	-1.06 ^{<i>a</i>}	134	1.213; 1.213	1658	1324	-
Pt-NO ₂	1	η-N	-2.55	128	1.239; 1.239	1507	1298	-0.33
Pt ₂ -NO ₂	1	η^2 -N,O	-2.08	130	1.264; 1.217	1614	1225	-0.39
Pt ₃ -NO ₂	1	η^2 -N,O	-2.24	127	1.290; 1.220	1590	1143	-0.43
Pt ₄ -NO ₂	1	μ-N,O	-2.51	119	1.352; 1.220	1559	903	-0.57
Pt ₅ -NO ₂	1	μ-N,O	-2.50	118	1.362; 1.221	1560	891	-0.57
Pt ₁₀ -NO ₂	5	η-N	-1.51	125	1.237; 1.242	1520	1304	-0.43
Pt(111)-NO ₂ ^b	0	μ-N,O	-1.25	119	1.316; 1.219	1541	978	-0.45

The normal modes shown (ν) are the former asymmetric and symmetric stretch modes. The relevant properties of the free CO₂ and NO₂ molecules are included for comparison. "Y" = C or N. See Figure 5 for snapshots of the clusters.

" Formation energies from $CO^{+1/2}O_2$ and $NO^{+1/2}O_2$.

^{b 1}/₁₆ ML coverage.