Supplementary Information for

Complexes of HNO₃ and NO₃⁻ with NO₂ and N₂O₄, and Their Potential Role in Atmospheric HONO Formation

Michael A. Kamboures¹ Jonathan D. Raff¹ Yifat Miller² Leon F. Phillips³ Barbara J. Finlayson-Pitts¹ R. Benny Gerber^{1,2}*

May 28, 2008

Submitted to:

Physical Chemistry Chemical Physics

- Department of Chemistry, University of California, Irvine, CA 92697 USA
- 2. Department of Physical Chemistry and the Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 91904, Israel
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

* Author to whom correspondence should be addressed. Telephone: 972-2-651-5732; FAX: 972-2-651-3742; e-mail: bgerber@uci.edu

HNO ₃		Frequencies		Calculate Intensities	
Mode	Description	Calculated (cm ⁻¹)	Experimental (cm ⁻¹)	Infrared (km·mol⁻¹)	Raman (Å⁴·amu⁻¹)
1	OH stretch	3784	3492 ª	91	43
2	asymmetric stretch	1864	1698 ª	270	13
3	HON bend	1351	1346 ª	120	5.4
4	ONO symmetric stretch	1314	1312 <i>ª</i>	210	22
5	(H)ON stretch	895	903 ª	230	8.4
6	OOON torsion	760	768 ª	6	0.1
7	ONO bend	661	664 ª	25	9.5
8	(H)ONO bend	592	598 ª	9	4.2
9	HONO torsion	459	479 ^a	150	1.6

Table S1 Vibrational frequencies, infrared intensities, and Raman intensities for HNO_3 obtained using ROMP2/TZP

^a W. A. Guillory and M. L. Bernstein, J. Chem. Phys., 1975, 62, 1058-1060.

 $\label{eq:solution} \begin{array}{l} \textbf{Table S2} \mbox{ Vibrational frequencies, infrared intensities, and Raman intensities for NO_2 obtained using ROMP2/TZP \\ \end{array}$

NO ₂		Frequencies		Calculated Intensities	
Mode	Description	Calculated (cm ⁻¹)	Experimental (cm ⁻¹)	Infrared (km·mol⁻¹)	Raman (Å⁴·amu⁻¹)
1	Asymmetric Stretch	1844	1618 ª	220	39
2	ONO Symmetric Stretch	1322	1318 ª	6.9	77
3	Bend	773	750 ª	4.3	2.2

^a T. Schimanouchi, *Tables of Molecular Vibrational Frequencies*. *Part 5.*, NSRDS-NBS 39, 1972.

Table S3 Vibrational frequencies, infrared intensities, and Raman intensities for N₂O₄ obtained using ROMP2/TZP

N ₂ O ₄	N ₂ O ₄		iencies	Calculated Intensities	
Mode	Description	Calculated (cm ⁻¹)	Experimental (cm ⁻¹)	Infrared (km·mol⁻¹)	Raman (Å⁴·amu¹)
1	in phase ONO asymmetric stretch	1947	1761 ª	310	0.0
2	180° out of phase ONO asymmetric stretch	1917	1718 ^ø	0.0	22
3	in phase ONO symmetric stretch	1405	1383 <i>b</i>	0.0	11
4	180° out of phase symmetric stretch	1270	1261 ª	430	0.0
5	in phase ONO bend	829	813 °	0.0	10
6	180° out of phase ONO bend	750	751 <i>ª</i>	270	0.0
7	NOON torsion	637	657 <i>°</i>	0.0	0.81
8	in phase ONN bend	470	480 ^d	0.0	8.3
9	OOON torsion	400	425 ª	8.3	0.0
10	NN stretch	257	262 °	0	44
11	180 ° out of phase ONN bend	202	265°	0.12	0.13
12	ONNO torsion	92	82 ^d	0.0	0.0

^a E. L. Varetti and G. C. Pimentel, *J. Chem. Phys.*, 1971, **55**, 3813. ^b F. Bolduan and H. J. Jodl, *Chem. Phys. Lett.*, 1982, **85**, 283-286.

^c D. E. Tevault and L. Andrews, Spectrochim. Acta, 1974, 30A, 969.

^d C. H. Bibart and G. E. Ewing, J. Chem. Phys., 1974, **61**, 1284-1292.

^e D. Luckhaus and M. Quack, Chem. Phys. Lett., 1992, 199, 293-301.

NO ₃ ·		Frequ	uencies	Calculated Intensities	
Mode	Description	Calculated (cm ⁻¹)	Experimental (cm ⁻¹)	Infrared (km·mol⁻¹)	Raman (Å ^{4.} amu ⁻¹)
1	Asymmetric stretch	1493	1356 ª	620	8.5
2	Asymmetric stretch	1493	1356 ª	620	8.6
3	Symmetric stretch	1066	1050 ^b	0	45
4	OOON torsion	833	831 ^b	11	0.0
5	ONO bend	726	720 ^b	0.59	5.6
6	ONO bend	726	720 ^b	0.59	5.7

Table S4 Vibrational frequencies, infrared intensities, and Raman intensities for NO₃⁻ obtained using ROMP2/TZP

^a D. Forney, W. E. Thompson and M. E. Jacox, *J. Chem. Phys.*, 1993, **99**, 7393. ^b G. Herzberg, *Molecular Spectra and Molecular Structure: II. Infrared and Raman* Spectra of Polyatomic Molecules, Van Nostrand, New Jersey, 1945, p. 178.

Additional configurations of (HONO)·(NO₃).

Two other stable configurations of $(HONO) \cdot (NO_3)$ were located in addition to the one shown in Fig 4. The first of these is displayed in Fig. S1. This configuration appears to be the global minimum energy structure for $(HONO) \cdot (NO_3)$ and contains HONO in the *trans* conformation. The second structure has a slightly potential energy and is shown in Fig. 6b. The potential energies of these structures are 42.1 kcal·mol⁻¹ and 43.1 kcal·mol⁻¹ greater than combined energy of isolated HNO₃ and NO₂. The potential energy of the *trans* complex is 3.5 kcal·mol⁻¹ less than the combined energies of isolated NO₃ and HONO. After ZPE is taken into consideration, the ROMP2 binding energy of the global minimum (*trans*-HONO) · (NO₃) is -3.3 kcal·mol⁻¹.

Fig. S1 Structural isomers of (HONO)·(NO₃): (a) global minimum structure, and (b) local minimum structure.