Supplementary data

$o-C_{6}H_{4}^{+}$		$1^2 B_1$				1^2A_2	
	Х	Y	Ζ		Х	Y	Ζ
C ₁	0.0000	0.6424	-1.2007		0.0000	0.6256	-1.2705
C_2	0.0000	1.4990	-0.1356		0.0000	1.4453	-0.1394
C ₃	0.0000	0.7314	1.0422		0.0000	0.6864	1.0900
C_4	0.0000	-0.7314	1.0422		0.0000	-0.6864	1.0900
C ₅	0.0000	-1.4990	-0.1356		0.0000	-1.4453	-0.1394
C ₆	0.0000	-0.6424	-1.2007		0.0000	-0.6256	-1.2705
H_1	0.0000	2.5707	-0.1435		0.0000	2.5206	-0.1371
H_2	0.0000	1.2226	2.0014		0.0000	1.2251	2.0207
H_3	0.0000	-1.2226	2.0014		0.0000	-1.2251	2.0207
H_4	0.0000	-2.5707	-0.1435		0.0000	-2.5206	-0.1371
$o-C_{6}H_{4}^{+}$	Symmetry			Fre	eq.		
$1^2 B_1$	a_1	633.5	968.9	1092.7	1252.9	1441.4	1549.9
		1900.1	3359.9	3403.2			
	a_2	407.1	570.7	922.1	1036.5		
	b_2	i875.16	632.5	971.1	1230.3	1393.2	1559.6
		3348.5	3400.6				
	b_1	363.8	740.9	998.3			
				1008 7	1276 4		1640.4
$1^{2}A_{2}$	a_1	624.6	1024.9	1096.7	12/0.4	1464.1	1640.4
$1^{2}A_{2}$	a_1	624.6 2010.0	1024.9 3369.9	3384.5	1276.4	1464.1	1640.4
1^2A_2	a_1 a_2	624.6 2010.0 361.6	1024.9 3369.9 480.6	3384.5 918.2	1276.4	1464.1	1640.4
1^2A_2	a_1 a_2 b_2	624.6 2010.0 361.6 454.9	1024.9 3369.9 480.6 862.1	1098.7 3384.5 918.2 1031.2	1276.4 1054.6 1195.7	1464.1	1515.5
1^2A_2	a_1 a_2 b_2	624.6 2010.0 361.6 454.9 3356.2	1024.9 3369.9 480.6 862.1 3378.4	3384.5 918.2 1031.2	1276.4 1054.6 1195.7	1464.1	1515.5

Table S1. Cartesian coordinates (in Å) of all the atoms in the CASPT2(11,12) optimized geometries for the ground (1^2B_1) and first excited (1^2A_2) states of the *o*-benzyne radical cation (for notations, see Figure 1), together with the CASSCF(7,8) frequencies (in cm⁻¹) (at the CASSCF(7,8) optimized geometries).

$m-C_6H_4^+$		$1^{2}A_{2}$				$1^{2}A_{1}$	
	Х	Y	Z		Х	Y	Z
C ₁	0.0000	0.0000	1.8143		0.0000	0.0000	1.6473
C ₂	0.7094	0.0000	0.6618		0.9620	0.0000	0.6923
C ₃	1.1595	0.0000	-0.6969		1.1991	0.0000	-0.6346
C_4	0.0000	0.0000	-1.4935		0.0000	0.0000	-1.3721
C ₅	-1.1595	0.0000	-0.6969		-1.1991	0.0000	-0.6346
C_6	-0.7094	0.0000	0.6618		-0.9620	0.0000	0.6923
H_1	0.0000	0.0000	2.8873		0.0000	0.0000	2.7202
H_2	2.1790	0.0000	-1.0299		2.1783	0.0000	-1.0761
H_3	0.0000	0.0000	-2.5678		0.0000	0.0000	-2.4484
H_4	-2.1790	0.0000	-1.0299		-2.1783	0.0000	-1.0761
$m-C_{6}H_{4}^{+}$	Symmetry			Fr	eq.		
$1^{2}A_{1}$	a_1	569.1	898.1	1087.1	1132.9	1502.9	1786.1
		3360.7	3386.0	3408.5			
	a_2	581.2	1818.6				
	b_2	243.1	920.7	1139.7	1181.2	1302.3	1383.2
		1587.4	3381.3				
	b_1	194.4	264.5	546.9	773.3	1008.2	
1^2A_2	a_1	852.9	910.9	1052.5	1142.8	1502.2	1863.7
		3381.1	3416.1	3420.2			
	a_2	551.5	824.3				
	b_2	572.7	877.6	1066.4	1187.7	1351.6	1451.7
		1558.0	3412.3				
	b_1	284.8	522.1	788.9	883.4	1006.8	

Table S2. Cartesian coordinates (in Å) of all the atoms in the CASPT2(11,12) optimized geometries for the ground (1^2A_2) and first excited (1^2A_1) states of the *m*-benzyne radical cation (for notations, see Figure 1), together with the CASSCF(7,8) frequencies (in cm⁻¹) (at the CASSCF(7,8) optimized geometries).

p-C ₆ H ₄ ⁺	$1^2B_{1\mathrm{u}}$					
	Х	Y	Z			
C1	0.0000	0.0000	1.2373			
C ₂	0.0000	1.2343	0.7343			
C ₃	0.0000	1.2343	-0.7343			
C_4	0.0000	0.0000	-1.2373			
C ₅	0.0000	-1.2343	-0.7343			
C ₆	0.0000	-1.2343	0.7343			
H_1	0.0000	2.1911	1.2246			
H_2	0.0000	2.1911	-1.2246			
H_3	0.0000	-2.1911	-1.2246			
H_4	0.0000	-2.1911	1.2246			

Table S3. Cartesian coordinates (in Å) of all the atoms in the CASPT2(7,8) optimized geometry for the ground (1^2B_{1u}) state of the *p*-benzyne radical cation (for notations, see Figure 1), together with the CASSCF(7,8) frequencies (in cm⁻¹) (at the CASSCF(7,8) optimized geometry).

p-C ₆ H ₄ ⁺	Symmetry			Freq.		
$1^2 B_{1u}$	a_g	765.5	1045.9	1181.9	1389.6	3388.7
	a_u	443.0	944.7			
	b_{1g}	1900.8				
	b_{2g}	i2123.25	900.2			
	b_{3g}	530.0	1330.2	1787.8	3371.4	
	b_{1u}	1089.4	1476.6	1807.8	3374.9	
	b_{2u}	967.6	1156.2	1500.1	3385.3	
	b_{3u}	221.5	760.2			

Electronic Supplementary Material for PCCP

This journal is © The Owner Societies 2008

Table S4. The important configurations ^a in the CASSCF(7,8) wavefunctions for the ground and excited states of the o-, m-, and p-benzyne radical cations calculated at the CASPT2(7,8) optimized geometries. The important configurations in the CASSCF(8,8) wavefunctions ^b for the ground states (S₀) of the o-, m-, and p-benzynes are also given in the table.

	State	Important configurations (coefficients)				
$o-C_6H_4^+(C_{2\nu})$	$1^{1}A_{1}(S_{0}, o-C_{6}H_{4})$	$\dots (1b_1)^2 (10a_1)^2 (1a_2)^2 (2b_1)^2$	(0.90)			
		$\dots (1b_1)^2 (10a_1)^0 (1a_2)^2 (2b_1)^2 (8b_2)^2$	(0.25)			
	1^2A_1	$\dots (1b_1)^2 (10a_1)^1 (1a_2)^2 (2b_1)^2$	(0.93)			
	1^2A_2	$\dots (1b_1)^2 (10a_1)^2 (1a_2)^1 (2b_1)^2$	(0.91)			
		$\dots (1b_1)^2 (10a_1)^0 (1a_2)^1 (2b_1)^2 (8b_2)^2$	(0.26)			
	$1^2 B_1(X)$	$\dots (1b_1)^2 (10a_1)^2 (1a_2)^2 (2b_1)^1$	(0.90)			
		$\dots (1b_1)^2 (10a_1)^0 (1a_2)^2 (2b_1)^1 (8b_2)^2$	(0.27)			
	$1^{2}B_{2}$	$\dots (1b_1)^2 (10a_1)^0 (1a_2)^2 (2b_1)^2 (8b_2)^1$	(0.86)			
		$\dots (1b_1)^2 (10a_1)^2 (1a_2)^2 (2b_1)^0 (8b_2)^1$	(0.27)			
		$\dots (1b_1)^2 (10a_1)^1 (1a_2)^2 (2b_1)^1 (8b_2)^0 (2a_2)^1$	(0.21)			
m -C ₆ H ₄ ⁺ ($C_{2\nu}$	$1^{1}A_{1}(S_{0}, m-C_{6}H_{4})$	$\dots (1b_1)^2 (2b_1)^2 (1a_2)^2 (11a_1)^2$	(0.88)			
)		$\dots (1b_1)^2 (2b_1)^2 (1a_2)^2 (11a_1)^0 (7b_2)^2$	(0.32)			
	$1^{2}A_{1}$	$\dots (1b_1)^2 (2b_1)^2 (1a_2)^2 (11a_1)^1$	(0.93)			
	$1^2 A_2(X)$	$\dots (1b_1)^2 (2b_1)^2 (1a_2)^1 (11a_1)^2$	(0.94)			
	$1^{2}B_{1}$	$\dots (1b_1)^2 (2b_1)^1 (1a_2)^2 (11a_1)^2$	(0.85)			
		$\dots (1b_1)^2 (2b_1)^1 (1a_2)^2 (11a_1)^0 (7b_2)^2$	(0.39)			
	$1^2 B_2$	$\dots (1b_1)^2 (2b_1)^2 (1a_2)^0 (11a_1)^2 (7b_2)^1$	(0.91)			
$p-C_6H_4^+$ (D_{2h}	$1^{1}A_{g}(S_{0}, p-C_{6}H_{4})$	$(1b_{3u})^2(1b_{2g})^2(1b_{1g})^2(5b_{1u})^2$	(0.75)			
)		$\dots (1b_{3u})^2 (1b_{2g})^2 (1b_{1g})^2 (5b_{1u})^0 (6a_g)^2$	(0.54)			
	$1^2 A_g$	$(1b_{3u})^2(1b_{2g})^2(1b_{1g})^2(5b_{1u})^0(6a_g)^1$	(0.92)			
	$1^2 A_u$	$((1b_{3u})^2(1b_{2g})^2(1b_{1g})^d(5b_{1u})^u(6a_g)^u$	(0.81)			
		$((1b_{3u})^2(1b_{2g})^2(1b_{1g})^u(5b_{1u})^d(6a_g)^u$	(0.47)			
	$1^2 B_{1g}$	$(1b_{3u})^2(1b_{2g})^2(1b_{1g})^1(5b_{1u})^2$	(0.75)			
		$(1b_{3u})^2(1b_{2g})^2(1b_{1g})^1(5b_{1u})^0(6a_g)^2$	(0.52)			
	$1^2 B_{1u}(\mathbf{X})$	$(1b_{3u})^2(1b_{2g})^2(1b_{1g})^2(5b_{1u})^1$	(0.92)			
	$1^{2}B_{2g}$	$(1b_{3u})^2(1b_{2g})^1(1b_{1g})^2(5b_{1u})^2$	(0.73)			
		$(1b_{3u})^2 (1b_{2g})^1 (1b_{1g})^2 (5b_{1u})^0 (6a_g)^2$	(0.58)			
	$1^2 B_{2u}$	$(1b_{3u})^2 (1b_{2g})^u (1b_{1g})^u (5b_{1u})^d (6a_g)^2$	(0.76)			
		$(1b_{3u})^{u}(1b_{2g})^{2}(1b_{1g})^{d}(5b_{1u})^{2}(6a_{g})^{u}$	(0.35)			
		$(1b_{3u})^2(1b_{2g})^{u}(1b_{1g})^{d}(5b_{1u})^{u}(6a_g)^2$	(0.29)			
	$1^{2}B_{3g}$	$\dots(1b_{3u})^2(1b_{2g})^{u}(1b_{1g})^{d}(5b_{1u})^2(6a_g)^{u}$	(0.62)			
		$\dots(1b_{3u})^2(1b_{2g})^d(1b_{1g})^u(5b_{1u})^2(6a_g)^u$	(0.59)			
		$\dots(1b_{3u})^{u}(1b_{2g})^{2}(1b_{1g})^{u}(5b_{1u})^{d}(6a_{g})^{2}$	(0.30)			
	$1^2 B_{3u}$	$(1b_{3u})^2(1b_{2g})^d(1b_{1g})^2(5b_{1u})^u(6a_g)^u$	(0.81)			
		$(1b_{3u})^2(1b_{2g})^{u}(1b_{1g})^2(5b_{1u})^{d}(6a_g)^{u}$	(0.46)			

^a The configurations with coefficients (absolute values) larger than 0.20.

Table S5. Mulliken spin (S) and LoProp charge (Q) populations in the $1^2B_1(X)$ and 1^2A_2 states of the *o*-benzyne radical cation obtained in the CASSCF(11,12)//CASPT2(11,12) calculations. In Table we also give the charge populations in the ground state (S₀) of the *o*-benzyne molecule obtained in the CASSCF(12,12)//CASPT2(12,12) calculations.

		C1	C ₂	C ₃	H_1	H ₂
$1^2 B_1$	S	0.261	-0.080	0.315	-0.001	0.005
	Q	0.171	-0.081	0.037	0.190	0.183
$1^{2}A_{2}$	S	0.035	0.426	0.031	0.007	0.001
	Q	0.068	0.105	-0.049	0.196	0.180
S_0	Q	-0.019	-0.115	-0.131	0.136	0.128

Table S6. Mulliken spin (S) and LoProp charge (Q) populations in the 1^2A_2 (X) and 1^2A_1 states of the *m*-benzyne radical cation obtained in the CASSCF(11,12)//CASPT2(11,12) calculations. In Table we also give the charge populations in the ground state (S₀) of the *m*-benzyne molecule obtained in the CASSCF(12,12)//CASPT2(12,12) calculations.

		C_1	C_2	C ₃	C_4	H_1	H_2	H_3
$1^{2}A_{2}$	S	-0.016	0.122	0.448	-0.141	0.000	0.008	0.000
	Q	0.076	0.138	-0.035	-0.050	0.215	0.190	0.175
$1^{2}A_{1}$	S	-0.003	0.479	-0.033	0.073	0.009	0.005	0.020
	Q	-0.065	0.247	-0.113	-0.020	0.227	0.206	0.178
S_0	Q	-0.123	-0.014	-0.158	-0.090	0.152	0.142	0.123

Table S7. Mulliken spin (S) and LoProp charge (Q) populations in the 1^2B_{1u} (X) state of the *p*-benzyne radical cation obtained in the CASSCF(7,8)//CASPT2(7,8) calculations. In Table we also give the charge populations in the ground state (S₀) of the *p*-benzyne molecule obtained in the CASSCF(8,8)//CASPT2(8,8) calculations.

		C_1	C ₂	H ₁
$1^2 B_{1u}$	S	0.458	0.019	0.002
	Q	0.242	-0.086	0.215
\mathbf{S}_{0}	Q	-0.007	-0.138	0.142

Table S 8. Isotropic ¹³C hyperfine coupling constants ($a(C_i)$, in Gauss) in the ground (X) and first excited states of the *o*- and *m*-benzyne radical cations and in the ground (X) state of the *p*-benzyne radical cation, obtained in the UB3LYP calculations ^a with the 6-31G(d,p) (B1) and 6-311G(d,p) (B2) basis sets (for atom lablels, see Figure 1). The $<S^2>$ values in the UB3LYP calculations are also given in the table.

	State	Basis	<i>a</i> (C ₁)	<i>a</i> (C ₂)	<i>a</i> (C ₃)	<i>a</i> (C ₄)	<s<sup>2></s<sup>
$o-C_{6}H_{4}^{+}$	$1^2B_1(\mathbf{X})$	B1	9.4	-7.9	13.3	13.3	0.767
		B2	3.6	-7.4	5.2	5.2	0.767
	$1^{2}A_{2}$	B1	-5.8	20.0	-1.6	-1.6	0.765
		B2	-8.0	9.4	-3.4	-3.4	0.764
$m - C_6 H_4^+$	$1^2A_2(\mathbf{X})$	B1	-3.3	1.5	21.1	-12.4	0.769
		B2	-3.5	-3.8	11.0	-11.7	0.768
	$1^{2}A_{1}$	B1	-12.4	70.9	-5.3	40.7	0.765
		B2	-9.6	71.8	-4.2	43.7	0.764
$p-C_{6}H_{4}^{+}$	$1^2 B_{1u}(\mathbf{X})$	B1	61.3	29.9	29.9	61.3	0.773
		B2	60.4	34.8	34.8	60.4	0.772

^a The UB3LYP calculations were performed at the CASPT2(11,12) optimized geometries for the ground and first excited states of the *o*- and m-C₆H₄⁺ cations and at the CASPT2(7,8) optimized geometry for the ground state of the *p*-C₆H₄⁺ cation.

Molecule	State	UB3LYP/ 6-31G(d,p)	UB3LYP/6-311G(d,p)
<i>o</i> -C ₆ H ₄ +	$1^2B_1(X)$	8.3	9.2
$o-C_6H_4+$	1^2A_2	26.0	24.6
m-C ₆ H ₄ +	$1^{2}A_{2}(X)$	0.1	-0.1
$m-C_6H_4+$	1^2A_1	-22.0	-21.5
$p-C_6H_4+$	$1^{2}B_{1u}(X)$	-28.4	-27.8

Table S9. The NICS (nucleus-independent chemical shift) values in the ground (X) and first excited states of the *o*- and *m*-benzyne radical cations and in the ground (X) state of the *p*-benzyne radical cation, obtained in the UB3LYP calculations ^a with the 6-31G(d,p) and 6-311G(d,p) basis sets

^a The UB3LYP calculations were performed at the CASPT2(11,12) optimized geometries for the ground and first excited states of the *o*- and m-C₆H₄⁺ cations and at the CASPT2(7,8) optimized geometry for the ground state of the *p*-C₆H₄⁺ cation. The NICS values were calculated at the central points of the carbon-frameworks.

1. The drawings of the 1a₂ and 2b₁ orbitals of the *o*-benzyne molecule:

2. The drawings of the $1a_2$ and $11a_1$ orbitals of the *m*-benzyne molecule:

3. The drawing of the $5b_{1u}$ orbital of the *p*-benzyne molecule:

