Redox-linked protein dynamics of cytochrome c probed by timeresolved surface enhanced infrared absorption spectroscopy

Nattawadee Wisitruangsakul,^{1,3} Ingo Zebger,¹* Khoa H. Ly,¹ Daniel H. Murgida,² Sanong Ekgasit,³ and Peter Hildebrandt¹*

¹ Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany

² Departamento de Química Inorgánica, Analítica y Química Física / INQUIMAE-CONICET,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad
Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina.

³Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Content:

Description of the model for approximating the electric field strength at the protein/SAM interface.

Electric field strength at the protein/SAM interface

Fig. S1. Schematic representation of the potential distribution across the electrode/SAM/protein/solution interfaces.

Within the electrostatic model for the interfacial potential drops (Fig. S1), the electric field strength at the protein/SAM interface E_{EF} is given by

(S1)
$$E_{EF} = \frac{\sigma_M}{\varepsilon_0 \varepsilon_c}$$

or, with

$$(S2) \quad \sigma_{M} + \sigma_{C} + \sigma_{RC} + \sigma_{S} = 0$$

(S3)
$$E_{EF} = -\frac{\sigma_c + \sigma_{RC} + \sigma_s}{\varepsilon_0 \varepsilon_c}$$

where σ_M , σ_C , σ_{RC} , and σ_S are the charge densities on the metal, on the SAM, at the reaction site (heme), and in the solution, respectively (§ref). The quantities ε_0 and ε_S refer to the permittivity and the dielectric constant in the SAM, respectively. Linearisation of the Gouy-Chapman expression for σ_S allows rewriting Eq. S3 to

(S4)
$$E_{EF} = -\frac{\sigma_C + \sigma_{RC} - \varepsilon_0 \varepsilon_S \kappa E_{RC}}{\varepsilon_0 \varepsilon_c}$$

where ε_S and κ are the dielectric constant and the Debye length in solution. E_{RC} denote the potential drop at the redox site which can be expressed by

(S5)
$$E_{RC} = \frac{\sigma_C \varepsilon_P d_C + \varepsilon_o \varepsilon_P \varepsilon_C (E - E_{pzc}) + (d_C \varepsilon_P + d_{RC} \varepsilon_C) \sigma_{RC}}{\varepsilon_o [\varepsilon_C \varepsilon_P + (d_C \varepsilon_P + d_{RC} \varepsilon_C) \varepsilon_S \kappa]}$$

Here ε_P is the dielectric constant in the protein and d_C and d_{RC} are the thickness of the SAM and the distance between the SAM/protein interface and the reaction site, as defined in Fig. S1. The quantities E and E_{pzc} refer to the electrode potential and the potential of zero charge, respectively. Inserting Eq. S5 into Eq. S4 one obtains

(S6)
$$E_{EF} = \frac{-\sigma_{C} \left[\varepsilon_{C} \varepsilon_{P} + d_{RC} \varepsilon_{C} \varepsilon_{S} \kappa \right] - \sigma_{RC} \varepsilon_{C} \varepsilon_{P} + \varepsilon_{0} \varepsilon_{S} \varepsilon_{C} \varepsilon_{P} \kappa \left(E - E_{pzc} \right)}{\varepsilon_{o} \varepsilon_{C} \left[\varepsilon_{C} \varepsilon_{P} + (d_{C} \varepsilon_{P} + d_{RC} \varepsilon_{C}) \varepsilon_{S} \kappa \right]}$$

Since at pH values around 7, $|\sigma_c| >> |\sigma_{RC}|$ and furthermore $\varepsilon_c \varepsilon_P \ll d_{RC} \varepsilon_c \varepsilon_s \kappa$, Eq. S6 simplifies to

(S7)
$$E_{EF} = \frac{-\sigma_C d_{RC} + \varepsilon_0 \varepsilon_P \left(E - E_{pzc} \right)}{\varepsilon_o \left(d_C \varepsilon_P + d_{RC} \varepsilon_C \right)}$$