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I. Theoretical details 
 
Appendix A. Anisotropic susceptibility and dipolar shift of a paramagnetic Ln3+ 
complex 
 
Consider a complexed paramagnetic Ln3+ ion with a ground state multiplet J of Landé factor 

Jg . The susceptibility tensor χ  of a single Ln3+ ion is anisotropic because of the presence of a 
ligand field. In the molecular (M) frame of its principal axes , it can be diagonalized as OXYZ

αβ αα αβχ χ δ=  (α , β  = X, Y, Z), so that in this frame the components αµ  of the Ln3+ 
magnetic moment µ  induced by an applied magnetic field 0 0B=B n of direction cosines nα  
are  
 
 0n Bα αα αµ χ=  (A1) 
 
Following Bleaney,9 each component αµ  gives rise to a local dipolar magnetic field α∆B  of 
components Bαβ∆  at the position of the studied nuclear spin I. The sum  of the 

projections of 
, ,

.
X Y Z

α
α =

∆∑ B n

α∆B  along the direction n  of  in the (M) frame depends on the 
instantaneous orientation of the complex in the laboratory (L) frame. In the (M) frame, n  has 
an isotropic distribution reflecting the orientation isotropy of the complexes in the liquid. Let 
( ,

0B

Ir Iθ , Iφ ) be the spherical coordinates in the (M) frame of the Ln3+- I interspin vector . 
The average of  over all values of 

Ir

, ,
.

X Y Z
α

α =

∆∑ B n nα  is a local field B∆  along , which acts 

on the nuclear spin I during the lifetime of the complex and is given by 

0B

 

 (3
0

1 ,
2 I I

I

B F
B r

)θ φ∆
=  (A2) 

 
with  
 
 ( ) ( )( ) ( )2, 3cos 1 sinI I ZZ I XX YY I IF 2 cos 2θ φ χ χ θ χ χ θ≡ − − + − φ  (A3) 
  
and ( ) 3XX YY ZZχ χ χ χ≡ + + .  
 For a paramagnetic Ln3+ ion, but Gd3+, the total Hamiltonian of the ground multiplet, 
including the Zeeman (Z) energy and the crystal field (cf) effects, is13 
 
 ( ) ( )

Z cf B
2,4,6

. k k
J

k k q k
q qH H H g B Tµ

= − ≤ ≤

= + = + ∑ ∑B J  (A4) 

 
where  are crystal field parameters and  (( )k

qB ( ) ( ) ( )k k
q qT T J= k q k− ≤ ≤ ) are the standard 

components of an irreducible tensor operatorS1,8 of order k. Assuming that the crystal field 
energy splitting is much smaller than the energy separation of the ground and first excited 
multiplets, it can be shownS2 that the high-temperature expansion of the susceptibility 
coefficient ααχ  limited to its two main terms is 
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( )

(Curie anisotropy 2 2 2 2 2
0 B 0 B cf2

B B

( 1) 1 tr
3 (2 1)

J J
J Jg g

k T J k T
)H Jαα αα αχ χ χ µ µ µ µ+

= + = −
+

 (A5) 

 
where the matrix trace is over the (2 1)J +  states of the ground multiplet J. In eqn. (A5), the 
first term, , is the isotropic Curie contribution, whereas the second one, , is the 
source of the susceptibility anisotropy that induces the paramagnetic shift.  

Curieχ anisotropy
ααχ

 The fact that the susceptibility anisotropy is determined by the sole crystal field 
Hamiltonian of second order is a direct consequence of eqn. (A5). Indeed, 2Jα  is a linear 
combination of the components , so that all the terms of  of order  = 4, 6 do not 

contribute to 

(2)
qT cfH k

( )2
cftr H Jα  since8 ( )( ) (2)

'tr 0k
q qT T =  if 2k ≠ . Therefore, the effective part of  

is its second order term that can be written in the form13 
cfH

 
 2 2

X X Y Y Z Z
2H D J D J D J= + +  (A6) 

 
with . The anisotropic terms  are calculated as follows. The trace of 

 is 

0X Y ZD D D+ + = anisotropy
ααχ

( Zexp Jλ ) ( ) ( ) (
2

2
Z

0

tr exp tr
2 !

p
p

Z
p

J
p

λλ
∞

=

=⎡ ⎤⎣ ⎦ ∑ )J . It also takes the form 

( )Ztr exp M

J M J
J eλλ

− ≤ ≤

= =⎡ ⎤⎣ ⎦ ∑  ( ) [ ]sinh 1 2 sinh 2Jλ λ+⎡ ⎤⎣ ⎦  that can be expanded in a power 

series of λ . The expression of ( )2tr p
ZJ  is obtained by equating the 2 pλ  coefficients in these 

two series. In particular, we have ( )2tr (1 3) (2 1) ( 1)ZJ J J J= + +  and 

( )4tr (2 30)(2 1) ( 1)(3 3 1)ZJ J J J J= + + +2 J − . Because the components , , XJ YJ ZJ  of the 

angular momentum  play equivalent roles, the equalities J ( ) ( )4tr tr 4J Jα β=  and 

( ) (2 2 2 2
' 'tr trJ J J J )α β α= β  hold if α β≠  or ' 'α β≠ , so that ( ) ( ) (2 2 4 2 2tr =3tr +6tr )Z X ZJ JJ J J  and  

( )2 2 2tr (1 30)(2 1) ( 1)(2 2 1X ZJ J J J J J J= + + + )+ Z. Since X YD D D+ = − , the anisotropic term 

 of the susceptibility tensor in eqn. (A5) is readily given by eqn. (A7) with anisotropy
ZZχ Zα =  

and similar expressions of  hold for anisotropy
ααχ α =X, Y.  

 

 
( )

anisotropy 2 2
0 B 2

B

( 1)(2 1)(2 3)
30

J
D J J J Jg

k T
α

ααχ µ µ + − +
= −  (A7) 

 
Setting ˆ 3 2ZD D≡ , ( )ˆ 2X YE D D≡ − , the expression of H  given by eqn. (A6) takes the 
standard form 
 
 ( )2ˆ ˆ( 1) 3 2 2

Z X YH D J J J E J J⎡ ⎤= − + + −⎣ ⎦  (A8) 
 
The linear combinations of the susceptibility coefficients ααχ  entering eqn. (A3) and given 
by eqn. (A5) can be expressed in terms of the anisotropic parts  as anisotropy

ααχ anisotropy
ZZ ZZχ χ χ− =  
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since ( )2
cf

, ,
tr

X Y Z
H Jα

α=

=∑   and . Replacing 

 by their expressions in eqn. (A7), the local field 

( )cf( 1)trJ J H+ = 0 anisotropy anisotropy
XX YY XX YYχ χ χ χ− = −

anisotropy
ααχ B∆  given by eqns. (A2) and (A3) 

simplifies to 
 

 
( )

(2 2 3
0 B 2

0 B

( 1)(2 1)(2 3) " ,
60

)J I I
B J J J Jg

B k T
Ir Fµ µ −∆ + − +

= − θ φ  (A9) 

 
with 
 

 ( ) ( )2 22 ˆ ˆ" , 3cos 1 2 sin cos 2
3I I I I IF D Eθ φ θ θ≡ − + φ  (A10) 

 
The paramagnetic shift Mω∆  in eqn. (1) readily follows from eqns. (A9) and (A10).  
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Appendix B. The standard equations for inner and outer-sphere paramagnetic 
relaxation enhancements 
 
Let ( ) ( ) 2Curie 2

eff B8 5 IA k Tπ ω µ⎡ ⎤≡ ⎣ ⎦  and ( )SBM 28 5 IA π γ≡ ) 2 2
B ( 1Jg J Jµ× +  be the Curie and 

Solomon, Bloembergen and Morgan (SBM) dipolar relaxation factors, respectively. 
 
Curie and SBM contributions to the intramolecular nuclear relaxation rates15 
 
Let  be the Ln3+ - water proton distance in the complex. Introducing the spectral density of 
the isotropic rotational Brownian diffusion of the complex  

Ir

 

 R
2R 6 2

R

1( )
4 1I

j
r 2

τω
π ω τ

≡
+

 (B1) 

 
the Curie intramolecular relaxation rates  read  Curie

MRα

 

 
Curie

Curie
1M 2R ( )

3 I
AR j ω= , 

Curie
Curie
2M 2R 2R

2 1(0) ( )
3 3 2 I

AR j j ω⎡ ⎤= +⎢ ⎥⎣ ⎦
 (B2) 

 
Besides, the SBM intramolecular relaxation rates  are SBM

MRα

 

 SBM SBM SBM
1M 2M 06

10 1
3 4 S

I

R R A
r
τ

π
= =  (B3) 

 
Curie and SBM contributions to the outer-sphere paramagnetic relaxation 
enhancements 
 
Consider the relative translational diffusion of the centres of two hard spheres in a continuous 
solvent.17,18 The intermolecular dipolar spectral density 2 ( )j ω  of this model of motion is 
 

 
6

Avogadro
2 2 3

LnH

10 4( ) Re
3 9 9 4

N kj
Da k k k

ω
− +⎛ ⎞

⎟= ⎜ + + +⎝ ⎠
 with k iωτ=  (B4) 

 
The Curie OS-PREs  read OS Curie

pRα

 

 OS Curie Curie
1p 2

1 ( )
3 IR A c j ω= , OS Curie Curie

2p 2 2
1 2 1(0) ( )
3 3 2 IR A c j j ω⎡ ⎤= +⎢ ⎥⎣ ⎦

 (B5) 

 
Besides, the SBM OS-PREs  are  OS SBM

pRα

 

 OS SBM OS SBM SBM 6
1p 2p Avogadro 03

LnH

10 110
3 3 SR R A c N

a
τ−= =  (B6) 
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Appendix C. Relation between transverse and longitudinal paramagnetic relaxation 
enhancements 
 
The Curie transverse relaxation rate , which is proportional to Curie

2MR Curie 2
IA ω∝ , increases 

with field as 2
0B . Then, since 0Sτ  is very short,11,15,16 the large magnetic fields used in high 

resolution NMR ensure that >> , so that the approximation  holds. 
Besides, according to eqns. (B1) and (B2),  is simply proportional to  as  

Curie
2MR SBM

2MR 2MR ≅ Curie
2MR

Curie
2MR Curie

1MR
 

 Curie 2 2 Curie
2M R 1M

7 2
6 3 IR ω τ⎛ ⎞= +⎜ ⎟

⎝ ⎠
R  (C1) 

 
The Curie longitudinal relaxation rate  = Curie

1MR ( )Curie
2R3 ( IA j )ω  is proportional to 

( )2 2
R 1I I

2
Rω τ ω τ+ . It also increases all the more rapidly with field since R 1Iω τ ≤ , i.e., for 

complexes of low and moderate molecular weights. Then,  is significantly larger than 
 and the approximation  is also reasonable. Replacing  and  by 

their approximate values 

Curie
1MR

SBM
1MR 1MR ≅ Curie

1MR Curie
2MR Curie

1MR

2MR  and 1MR , respectively, rigorous eqn. (C1) transforms into the 
approximate relation  
 

 2 2
2M R 1M

7 2
6 3 IR Rω τ⎛≅ +⎜

⎝ ⎠
⎞
⎟  (C2) 

 
which is close to eqn. (C3) 
 

 2M 1M
7
6

R R≅  (C3) 

 
for complexes with fast enough Brownian rotation. Substituting the approximation (C2) for 

2MR  in the expression (8) of 2pR  and then  for , OS
1p 1pR R− 1Mq f R 2pR  can be rewritten as  

 

 ( ) 2 2
RM

2p 1p2 2

7 6 2 3
1 1

IxR q f R
x x

ω τω ε
+∆

= +
+ +

+  (C4) 

 
with a residual  
 

 ( ) 2 2
ROS OS

2p 1p2

7 6 2 3
1

IR R
x
ω τ

ε
+

≡ −
+

 (C5) 

 
Consider the situations where the residual ε  is small with respect to ( )2

M 1q f x xω∆ +  and 
can be neglected in eqn. (C4). The first situation occurs when the exchange rate is 
intermediate, M Mx ω τ= ∆   1, so that ≅ ( )2

M 1q f x xω∆ +  is the dominant term of 2pR  in eqn. 
(8) and (C4) at high field and ε  is negligible. In the second situation, the exchange is fast, 

M Mx ω τ= ∆  < 1, and the rotational diffusion of the complex is fast, RIω τ  < 1, as for 
complexes of low and moderate molecular weights in a solution of normal viscosity.  In such 
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a solution, any reasonably small molecule  has a fast self-diffusion and a short 
translational correlation time 

IM

τ , so that Iω τ  < 1 and 2 2( ) (0)Ij jω ≅ . According to eqn. (B5), 
the approximation  
 

 OS Curie OS Curie
2p 1p

7
6

R R≅  (C6) 

 
holds. Then, since  at high field, the residual OS OS Curie

p pR Rα α≅ ε  given by eqn. (C5) is small and 
the approximation 0ε ≅  is reasonable. In brief, in a usual liquid solution, except in the case 
of a fast exchanging molecule  that coordinates Ln3+ in a slowly rotating complex, eqn. 
(C4) can be approximated by the searched expression (9) of 

IM

2pR  in terms of Iω∆  and 1pR  
 

 ( ) 2 2
R

2p 1p2

7 6 2 3
1

I
IR x R

x
ω τ

ω
+

= ∆ +
+

 (9) 

 
It should be emphasized that eqns. (C3) and (C6), which are at the basis of the approximation 
eqn. (9), were proven in the case of the representative standard relaxation model of Appendix 
B. However, they rest only on eqns. (B2) and (B5), which hold for the spectral densities  
and  of any models of IS and OS dynamics. This is the fundamental reason of the general 
applicability of eqn. (9). The value of 

2Rj

2j

M Mx ω τ= ∆  at a given temperature is the solution of 
eqn. (9) obtained by replacing 1pR , 2pR , and Iω∆  by their values measured on any high-
resolution spectrometer and Rτ  by a reasonable estimate from the molecular weight of the 
complex.5 Finally, the well-known expression3 of the observed paramagnetic frequency shift  
 

 
( )

M
2 2

M 2M[1 ]
I q f

T x
ωω

τ
∆

∆ =
+ +

 (C7) 

 
here simplifies to 
 

 M
21I q f

x
ωω ∆

∆ =
+

 (C8) 

 
Multiplication of the two members of this equation by Mτ  yields the searched expression (10) 
for the residence time 
 

 M 21I

q f x
x

τ
ω

=
∆ +

 (10) 

 
Note that the correction factor ( ) 2 2

R7 6 2 3 Iω τ+  in eqn. (9) stems from the 

approximate expression of 2MR  in eqn. (C2), which is based on the fact that  at 
sufficiently high magnetic field. For the paramagnetic Ln3+ ions of the first series (Ce3+ to 
Nd3+), even at rather high magnetic field, the SBM intramolecular and OS relaxation rates can 
dominate their Curie counterparts as seen in ESI, section V. Then, substituting  

Curie SBM
M MR Rα α>>

SBM
1M 1MR R≅
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for  in the expression (8) of SBM
2M 2MR R≅ 2pR , and then  for , OS

1p 1pR R− 1Mq f R 2pR  can be 
rewritten as 
 

 2p 1p2

1 '
1IR x R

x
ω ε= ∆ + +

+
 with OS OS

2p 1p2

1'
1

R R
x

ε ≡ −
+

 (C9) 

 
The shifts Mω∆  of the paramagnetic Ln3+ ions of the first series are significantly smaller than 
those of the heavy paramagnetic Ln3+ ions, so that 1x <<  except for a particularly long 
lifetime Mτ . The approximation ' 0ε ≅  is reasonable and eqn. (C9) reduces to 
 

 2p 1p2

1
1IR x R

x
ω= ∆ +

+
 (C10) 

 
The correction factor ( ) 2 2

R7 6 2 3 Iω τ+  in eqn. (9) is simply replaced by 1 in eqn. (C10). The 

value of ( ) 2 2
R7 6 2 3 Iω τ+  differs from 1 by less than 20 % for the many fast rotating 

complexes with R 0.2Iω τ ≤ . Moreover, in a real situation, the Curie relaxation mechanisms 
are not fully negligible with respect to their SBM counterparts, so that the true correction 
factor replacing ( ) 2 2

R7 6 2 3 Iω τ+  in eqn. (9) should have an intermediate value between 1 and 

( ) 2 2
R7 6 2 3 Iω τ+ . To sum up, eqn. (9) is still expected to be a reasonable approximation for 

the paramagnetic Ln3+ ions of the first series. This is checked in ESI, section V.  
 Finally, replacing the PREs pRα  by their definitions p 0R R Rα α α= −  in eqn. (9), we 
obtain 
 

 ( ) 2 2
R

2 1 0
( ) 2 2

R
0 20 102

7 6 2 3
1

IR R
x
ω τ

ε
+

≡ −
+2

7 6 2 3
1

I
IR x R

x
ω τ

ω ε
+

= ∆ + +
+

 with  (C11) 

 
In many situations, 0ε  is much smaller than 2R  as it is the difference of two quantities which 
(i) are intrinsically small since 10R  and 20R  originate from relaxation mechanisms that are of 
purely nuclear origin and less efficient than those involving the paramagnetic Ln3+ ions and 
(ii) approximately cancel out each other since 20R  is just slightly larger than 10R  in the 
frequent case of extreme narrowing. Then, the approximation 0 0ε ≅  is reasonable and the 
exchange rate can be obtained from the sole relaxation rates 1R  and 2R  measured in the 
paramagnetic solution.  
 
Appendix D. Measurement of the relative frequency shift I Iω ω∆  
 
Consider a molecule  (here, HOD and MeOD) carrying the nuclear spin I of a resonating 
isotope (here, 1H) of screening constant 

IM

σ . Diamagnetic (dia) and paramagnetic (para) 
solutions of the molecules  are prepared in D2O without and with paramagnetic LnL 
complexes. Denote the susceptibility values per volume unit of these solutions by 

IM

diaχ  and 

dia paraχ χ+ , respectively. Standard NMR tubes of 5 mm diameter are filled with these 
solutions by 5 cm to form cylindrical liquid samples of large height/diameter ratio. Let ≅
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f 4.1 (4 )S π≅ −  be the form factors of these NMR samples16,21 in SI units. When the 
paramagnetic solution is in an applied magnetic field (induction) 0B , the average magnetic 
field acting on the spin I of a molecule , coordinating a complexed Ln3+ ion, is21 

IM

 
 ( ) ( )0 0 f dia para1 MB B B Sσ χ χ= − − + + ∆B  (D1) 
 
where MB∆  is the average pseudo-contact dipolar field giving rise to the pseudo-contact 
dipolar shift Mω∆  of eqn. (1). Because of the chemical exchange of , IM Mω∆  reduces to the 
observed shift Iω∆  given by eqn. (C7) or its simplified form eqn. (C8), so that the resonance 
frequency of I in the paramagnetic solution is 
 
 ( ) ( )f dia para1I I S Iω ω σ ω χ χ ω= − − + + ∆  (D2) 
 
Our goal is to measure Iω∆ . In order to get rid of the shift effects of the demagnetizing field 

represented by ( )f dia paraI Sω χ χ− + , a non-coordinating reference solute11 (here, tert-Butanol-

OD C(CH3)3OD) carrying a nuclear spin refI  of the same isotope, but with a different 
screening constant refσ σ≠ , is added to the diamagnetic and paramagnetic solutions. The 
magnetic field acting on the spin refI  is 
 
 ( ) ( )ref

ref 0 0 f dia para1B B B Sσ χ= − − + χ  (D3) 
 
so that the resonance frequency of this spin is 
 
 
 ( ) ( )ref ref

f dia para1I I Sω ω σ ω χ χ= − − +  (D4) 
 
Consequently, substracting eqn. (D4) from eqn. (D2) member by member and dividing the 
obtained equation by Iω , the observed relative frequency difference between the spins I and 

refI  in the paramagnetic solution is  
 

 
ref

para ref I

I I I

ω ωω ω σ σ
ω ω ω

∆ ∆−
≡ = − +  (D5) 

 
The quantity ( )ref

Iω ω ω−  is just obtained from the high resolution NMR spectrum of the 
paramagnetic solution as the difference expressed in ppm of the resonance frequencies of the 
peaks of I and refI . Similarly, in the diamagnetic solution without Ln3+ complexes, the 
observed relative frequency difference between the spins I and refI  is 
 

 
ref

refdia dia dia

I I

ω ω ω σ σ
ω ω
∆ −

≡ = −  (D6) 
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where ( )ref
dia dia Iω ω ω−  is the difference of the resonance frequencies of the peaks of I and 

refI  measured on the high resolution NMR spectrum. From eqns. (D5) and (D6), the 
paramagnetic frequency shift I Iω ω∆   used to determine  is given by exk
 

 para diaI

I I I

ω ωω
ω ω ω

∆ ∆∆
= −  (D7) 

 
 
The values of ( )ref

dia dia Iω ω ω−  and  ( )ref
Iω ω ω−  measured for HOD and MeOD are 

reported in Tables 2, 3, and 4 together with the derived paramagnetic frequency shifts 
I Iω ω∆ .  

 
Appendix E. Measurement of the concentration of LnL complexes in a paramagnetic 
solution 
 
The paramagnetic (para) solution can be prepared from a diamagnetic (dia) solution by adding 
the complex LnL. As in Appendix D, a non-coordinating reference solute11 (here, tert-
Butanol-OD C(CH3)3OD) carrying a nuclear spin refI  of screening constant refσ  are 
dissolved in the diamagnetic and paramagnetic solutions. In a given external magnetic field, 
the resonance frequency shift of the spin refI  between the paramagnetic and diamagnetic 
solutions is proportional to the concentration c (mM) of the complexes. Various methods 
based on this property can be used to measure this concentration as discussed by Corsi et al..22 
Here, we use the simple method successfully employed to measure the frequency shifts due to 
all the paramagnetic Ln3+ ions.16,21 In this method, the field serving to lock the deuterium 2H 
frequency has to keep the same value for the diamagnetic and paramagnetic NMR samples. 
For that purpose, after recording the spectrum of the diamagnetic sample, the 2H frequency 
tuning channel is shut down and immediately followed by the record of the spectrum of the 
paramagnetic sample in order to avoid the field variation with time. Then, the same total 
external field acts on the paramagnetic and diamagnetic samples, so that the resonance 
frequency of refI  is given by eqn. (D4) in the paramagnetic sample and by the similar 
equation  
 
 ( )ref ref

dia f dia1I I Sω ω σ ω χ= − −  (E1) 
 
in the diamagnetic sample. By subtracting eqn. (E1) from eqn.  (D4) member by member and 
dividing by Iω , the relative shift of the resonance frequency in the paramagnetic solution with 
respect to that in the diamagnetic solution is  
 

 
ref refref

dia
f para

I I

Sω ωω χ
ω ω

−∆
= = −  (E2) 

 
The paramagnetic susceptibility per volume unit paraχ  for a concentration c (mM) of complex 
is 
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2 2
eff B

para 0 Avogadro
B3

c N
k T

µ µχ µ=  (E3) 

 
so that the relative frequency shift becomes 
 

 
2 2ref
eff B

f 0 Avogadro
B3I

S c N
k T

µ µω µ
ω
∆

= −  (E4) 

 
 
 
Since the form factor16,21 of a cylindrical NMR liquid sample with a large standard 
height/diameter ratio ≅ 10 is f 4.1 (4 )S π≅ − , eqn. (E4) simplifies to 
 

 
ref

9
eff

298.151.720 10
I

c
T

ω µ
ω

−∆
= × 2  (E5) 

 
When the temperature T and the effective magnetic moment effµ  of the complexed Ln3+ ion 
are known, the measured value of ref

Iω ω∆  directly yields the concentration c (mM) from 
eqn. (E5).  
 
 
II. Experimental details 
 

Materials and sample preparation 

 

The NMR samples were prepared in situ by mixing appropriate volumes of two solutions A 

and B. Solution A contains the complex and was obtained by weighing the appropriate 

amounts of ligand H5dtpa (Sigma) and lanthanide salt TbCl3.6H2O (99.9 %, Aldrich), which 

were dissolved in ultra-pure D2O (99.96 % enrichment, Eurisotop). Then, the pH value of the 

solution was adjusted to approximatively 5.5, so that the final concentration of Tb(dtpa)2- in 

this mother-solution is 30 mM. The amount of added ligand was set to 1.1 times that of Tb3+ 

to avoid the presence of free metal ion. Solution B contains the probes and was obtained by 

dissolving the appropriate amounts of methanol CH3OD (99.5% enrichment, Aldrich), 

abbreviated as MeOD, and tert-butanol (CH3)3COD (2-methyl-2-propan(ol-d), 99 atom % D, 

ISOTEC), abbreviated as t-BuOD in ultra-pure D2O. The concentrations of these solutes were 

around 670 mM and 220 mM for MeOD and t-BuOD, respectively.  

The two solutions A and B were mixed in appropriate proportions to prepare a first 

paramagnetic NMR sample (sample 1) containing Tb(dtpa)2-, MeOD, and t-BuOD at 

concentrations of 24.2, 131.5, and 43 mM, respectively. A second paramagnetic sample 
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(sample 2) was made by dissolving the appropriate amount of pure MeOD and t-BuOD in a 

more concentrated mother-solution A' of Tb(dtpa)2- ( 2-Tb(dtpa)⎡ ⎤⎣ ⎦  = 58 mM,  pH  7), so 

that the final concentrations of Tb(dtpa)2-, MeOD, and t-BuOD in sample 2 were 57.9, 39,  

and 26 mM, respectively.  

≅

Paramagnetic dioxygen was removed from the NMR sample by gently bubbling argon 

through the solution for about 20 minutes with the help of a long needle plunged down to the 

bottom of the NMR tube.  

The Tb(dtpa)2- concentration was controlled by measuring the shift ref
Iω ω∆  of the 

resonance frequency of the t-BuOD methyl protons in each NMR sample with respect to their 

resonance frequency in the diamagnetic solution. The measured shifts at 298 K were 3.805 

and 9.046 ppm in samples 1 and 2. Assuming that the effective magnetic moment of Tb3+ in 

Tb(dtpa)2-  is 2
effµ  = 92.3 and slightly smaller than the free ion value16 94.5, the concentrations 

of complex derived from eqn. (E5) were found to be 24.0 and 57.0 mM in samples 1 and 2, 

respectively, in excellent agreement with the values 24.2 and 57.9 obtained by weighing.  

 

NMR experiments 

 

Instruments. The values of , , 1T 2T 1T ρ , para Iω ω∆  and , 10T dia Iω ω∆  were measured at 200 

MHz on a Brucker Avance DMX 200, at 400 MHz on a Varian Unity 400, at 500 MHz on a 

Bruker Avance 500, and at 800 MHz on a Varian Inova 800. Because chemical exchange is 

an activated process with a rate that varies rapidly with temperature, particular attention was 

paid to the temperature accuracy. Prior to the NMR study, the temperature at the position of 

the NMR sample was calibrated on each spectrometer by comparing the measured peak 

separations of the protons in pure methanol (temperature window -130°C, +50°C) and/or in 

ethylene glycol (temperature window 20°C, 200°C) to the values tabulated vs temperature in 

the Varian documentation. Then, the temperature was controlled during the experiment by a 

N2 flow heating system, in order to have an accuracy of ±0.5 K.  

 

Proton relaxation times. In the paramagnetic solutions, the longitudinal and transverse 

relaxation times  and  were measured with the standard inversion-recovery (IR) and 

Carr-Purcell Meiboom-Gill (CPMG) sequences,20 respectively. The longitudinal relaxation 

time in the rotating frame 

1T 2T

1T ρ  was measured as follows: First, the equilibrium magnetization 
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was rotated towards the y axis of the rotating frame with the help of a standard (90°)x pulse. 

Second, the time evolution of the rotated magnetization locked along the y axis was measured 

for variable delays τ  by application of a radio-frequency field 1B  along this axis.20 In the 

diamagnetic solution, the relaxation times of the HOD and MeOD protons are long because 

the molecules are small rapidly rotating bodies in a deuterated solvent. The longitudinal 

relaxation time  was obtained by using a saturation recovery sequence that avoids the need 

of a very long repetition time between two measurements.20  

10T

  
III. Measured values 
 
Diamagnetic reference solution 
 
Table 1 Temperature dependence of the measured relaxation times  of the HOD and 
MeOD protons in the diamagnetic solution B.  

10T

 
273.15T −  (K) 0.5 25 75 

10T (s) HOD 19.7a 38.5b 66b 

10T (s) MeOD 7.8a 14.2b 16b 

 a Varian Unity 400 
 b Bruker Avance 500 equipped with 

 
These long relaxation times have an accuracy of about 10 %. Because the processes giving 
rise to the relaxation are fast, the relaxation times  and 20T 1 0T ρ  are assumed to be equal to  
and independent of field (extreme narrowing situation). The PREs 

10T

p 0R R Rα α α= −  are 
obtained as the differences of the large relaxation rates Rα  measured in the paramagnetic 
solution minus the small diamagnetic corrections 0 1 0R Tα α=  that can be estimated roughly 
without introducing significant errors.  Therefore, the values of  at the intermediate 
temperatures were simply interpolated from the measured values.  

10T

 
 
Table 2 Temperature dependence of the measured chemical shift differences dia Iω ω∆  of the 
HOD and MeOD protons in the diamagnetic solution B at 500 MHz. The reference nuclei are 
the t-BuOD methyl protons 
 

273.15T −  (K) 0.5 12.2 25 36 50.8 75 
dia Iω ω∆ (ppm) HOD 3.816 3.675 3.532 3.406 3.2605 3.0449 

dia Iω ω∆ (ppm) MeOD 2.100 2.102 2.105 2.1063 2.1085 2.1122 
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Paramagnetic solutions of Tb(dtpa) 
 
Table 3 Temperature dependence at 500 MHz of the measured relaxation times , , 1T 2T 1T ρ , 
chemical shift differences para Iω ω∆ , and paramagnetic shifts I Iω ω∆  of the HOD protons 

in the paramagnetic sample 1 with [ ]Tb(dtpa)  = 24.2 mM. The reference nuclei are the t-
BuOD methyl protons 
 

273.15T −  (K) 0.5 12.2 25 36 50.8 75 
1T  (ms) 112.5 142.8 187.4 230.8 288 375.2 

2T  (ms) 3.24 6.18 16.9 35.7 80.5 187 

1T ρ  (ms) 3.1 5.76 16.3 35.7 82.3 195.2 

para Iω ω∆  (ppm) 3.634 3.453 3.3226 3.221 3.094 2.9071 

I Iω ω−∆  (ppm) 0.182 0.222 0.2094 0.185 0.1665 0.1378 
 
 
Table 4 Temperature dependence at 500 MHz of the measured relaxation times , , 1T 2T 1T ρ , 
chemical shift differences para Iω ω∆ , and paramagnetic shifts I Iω ω∆  of the MeOD protons 

in the paramagnetic sample 1 with [ ]Tb(dtpa)  = 24.2 mM. The reference nuclei are the t-
BuOD methyl protons 
 

273.15T −  (K) 0.5 12.2 25 36 50.8 75 
1T  (ms) 257.5 322 417.2 509.7 633.7 821.9 

2T  (ms) 16.6 38.2 102.1 192.2 350.3 584.4 

1T ρ  (ms) 17 38.9 98.3 192.1 349 625 

para Iω ω∆  (ppm) 2.074 2.072 2.0812 2.086 2.092 2.1004 

I Iω ω−∆  (ppm) 0.026 0.03 0.0238 0.0203 0.0165 0.0118 
 
 
Table 5 Magnetic field dependence at 298 K of the measured relaxation times , 1T 1T ρ , 
chemical shift differences para Iω ω∆ , and paramagnetic shifts I Iω ω∆  of the HOD protons 

in the paramagnetic sample 1 with [ ]Tb(dtpa)  = 24.2 mM. The reference nuclei are the t-
BuOD methyl protons 
 

(2 )I Iν ω π=  (MHz) 200 400 500 800 

1T  (ms) 377 230.3 187.4 105.8 

1T ρ  (ms) 79.1 23.4 16.3 6.30 

para Iω ω∆  (ppm) 3.323 3.328 3.3226 3.3351 

I Iω ω−∆  (ppm) 0.209 0.204 0.2094 0.1969 
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Table 6 Measured relaxation times , 1T 1T ρ , chemical shift differences para Iω ω∆ , and 
paramagnetic shifts I Iω ω∆  of the HOD and MeOD protons in the paramagnetic sample 2 
with [ ]Tb(dtpa)  = 57.9 mM at 298 K and 500 MHz. The reference nuclei are the t-BuOD 
methyl protons 
 
 

IM  HOD MeOD 

1T  (ms) 78.7 183.5 

1T ρ  (ms) 6.56 45.5 

para Iω ω∆  (ppm) 3.047 2.066 

I Iω ω−∆  (ppm) 0.485 0.039 
 
 
The values of 1pR , 1 pR ρ , and I Iω ω−∆  of the HOD protons in sample 2 are to within ± 3 % 
just those of sample 1 multiplied by the ratio 57.9 24.2  = 2.39 of the Tb(dtpa) concentrations 
in these samples. In the case of MeOD, this expected scaling still holds for the PREs 1pR , 

1 pR ρ  of its methyl protons. However, the ratio of the value of I Iω ω−∆  in sample 2 divided 
by that in sample 1 is just 1.64 instead of 2.39. A similar result was obtained at 400 MHz and 
might be attributed to some change of the weak coordination structure of MeOD induced by 
the significant concentration increase of Tb(dtpa)2- salt between sample 1 and sample 2. 
Clearly, understanding the effects of the molecular environment on the structure of labile 
adducts like TbMeOD(dtpa)2- needs further investigation in the future.  
 
 
Temperature dependence of Rτ . The rotational correlation time Rτ  of Tb(dtpa)2- in D2O is 
assumed to vary with temperature according to the Arrhenius law  
 

 298 R
R R

1 1exp
298

E
R T

τ τ ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 
where 298

Rτ = 80 ps is a reasonable value7,11,24 at 298 K and = 18.8 kJ mol-1 is the activation 
energy of the diffusional process obtained under the following assumption. The rotational 
diffusion coefficient  is given by a Stokes – Einstein law so that it is proportional to the 
ratio 

RE

RD
T η , where η  is the viscosity of D2O.  The activation energy of ( )R R1 6D Tτ η≡ ∝  

was simply obtained from the fit of the measured valuesS3 of η . The value 298
Rτ = 80 ps 

retained for Rτ  in D2O at 298 K was obtained simply by multiplying the rotational correlation 
time24 65 ps of Gd(dtpa)2- in H2O at 298 K by the viscosityS3 ratio 298

R, Gdτ ≅ ( ) ( )2 2D HO Oη η  

= 1.23 at 298 K. The value 298
R, Gdτ ≅ 65 ps was obtained through the reinterpretation23 of 

measured peak-to-peak EPR linewidthsS4 of Gd(dtpa)2- in H2O. It corresponds to an overall7 
rotational correlation time of the complex. It is somewhat shorter than the values 80 ps and 85 
ps of the Dy(dtpa)2- and La(dtpa)2- complexes, which were obtained by Vander Elst et al.11 
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and account for some internal motion of the bound water molecule. It is significantly shorter 
than the overall correlation time 298

ROτ  = 110 ps of Gd(dtpa)2- derived by Dunand et al.7 from a 
combined analysis of EPR and NMR data, but rather near the correlation time 298

RHτ  = 0.52 298
ROτ  

= 57 ps of the Gd3+ - water proton, which was obtained by these authors and capture overall 
and internal rotational dynamics similar to those involved in the proton relaxation considered 
in the present work. It should be emphasized that the accuracy of 298

Rτ  is not critical as long as 
the inequality  holds, so that the residual 2 2

R 1Iω τ << ε  defined by eqn. (C5) keeps a negligible 
value. For instance, in the case of Tb(dtpa)2-, changing 298

Rτ  by 50 % implies variations of 

 and 298
exk H

+
+∆  less than 1 %!  
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IV. Analysis of typical paramagnetic relaxation and frequency shift data of 
the water protons due to Dy(dtpa) derivatives 
 
Table 7 Longitudinal and transverse relaxivities 1 1pr R c≡  and 2 2pr R c≡  of the H2O protons 
in light water due to Dy(dtpa) and its derivatives Dy(dtpa-BEA) (BEA = bisethylamide), 
Dy(dtpa-BnBA)   (BnBA = bis-n-butylamide) measured by Vander Elst et al.11 at 300 and 600 
MHz.  
 

300 MHz 1r (s-1 mM-1) 
298 K 

2r (s-1 mM-1) 
298 K 

1r (s-1 mM-1) 
310 K 

2r (s-1 mM-1) 
310 K 

Dy(dtpa-BEA) 0.175 4.907 0.157 1.975 
Dy(dtpa-BnBA) 0.184 2.2361 0.161 1.333 

 
 

600 MHz 1r (s-1 mM-1) 
298 K 

2r (s-1 mM-1) 
298 K 

1r (s-1 mM-1) 
310 K 

2r (s-1 mM-1) 
310 K 

Dy(dtpa) 0.300 3.047 0.261 1.12 
Dy(dtpa-BEA) 0.351 15.846 0.272 7.835 
Dy(dtpa-BnBA) 0.350 12.205 0.274 5.600 

 
 
 
Table 8 Temperature dependence at 300 MHz of the reduced frequency shift 

( )r I q fω ω∆ = ∆ of the water protons due to Dy3+ in Dy(dtpa), Dy(dtpa-BEA), 
Dy(dtpa-BnBA) and measured by Vander Elst et al..11  
 

T  (K) 298 310 
rω∆  (106 rad s-1) Dy(dtpa) -1.2517 -1.1294 

rω∆  (106 rad s-1) Dy(dtpa-BEA) -1.1583 -1.0379 

rω∆  (106 rad s-1) Dy(dtpa-BnBA) -1.1488 -1.0523 
 
 
 
Table 9 The values of the residence time Mτ  of H2O bound to Dy(dtpa), Dy(dtpa-BEA), 
Dy(dtpa-BnBA) derived through the careful molecular analysis of Vander Elst et al.11 are 
compared with those obtained from eqns. (9) and (10) summarizing the present method 
 
 

Dy3+ complex Mτ (ns) Vander Elst et al. Mτ (ns) present method 
 298 K 310 K 298 K 310 K 
Dy(dtpa) 29 12 24(35) 9(11) 
Dy(dtpa-BEA) 225 110 185 (235) 91(97) 
Dy(dtpa-BnBA) 115 51 84(150) 57(54) 

 

The Mτ  values given by the present method in Table 9 were obtained as follows. For 
Dy(dtpa), the relaxivity values measured at 600 Mhz were used since they are approximately 
located on the fitted relaxivity curves shown in Figs. 2 and 4 of Vander Elst et al.. The value 
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of rω∆  at 600 MHz was simply approximated as the double of the measured value at 300 
MHz reported in Table 8. The values of Mτ  in parentheses were all obtained from the 
relaxivities measured at 600 MHz and from the shifts 298

Mω∆  and 310
Mω∆  of bound water 

reported in Table 3 of Vander Elst et al..  
 
 
Table 10 Reduced (r) frequency shift ( )r I q fω ω∆ = ∆  vs temperature of the water protons 
due to Dy3+ and Tb3+ in dtpa complexes. The values in the H2O solution of Dy(dtpa) 
measured by Vander Elst et al.11 at 300 MHz are compared to their counterparts in the D2O 
solution of Tb(dtpa), which are calculated by the expression ( )2

r M 1 xω ω∆ = ∆ + , where the 

shift Mω∆ = ( )2298
M 298.15 Tω∆  with 298

M 0Bω∆ = 1.292×105 rad s-1 T-1 and  the auxiliary 
variable M Mx ω τ= ∆  with M 1 kexτ = are derived from our NMR data.   
 

T  (K) 290 298 310 320 335 
rω∆  (106 rad s-1) Dy(dtpa) -1.3484 -1.2517 -1.1294 -1.0604 -0.9276 

rω∆  (106 rad s-1) Tb(dtpa) -0.953 -0.909 -0.842 -0.790 -0.721 
 
The reduced shift due to Tb(dtpa) is significantly smaller than that due to Dy(dtpa) as 
expected from the electronic properties of the Tb3+ and Dy3+ ions under the reasonable 
hypothesis that the two complexes are isostructural.7 At 298 K, the ratio 

[ ] [ ]298 298
M MTb(dtpa) Dy(dtpa)ω ω∆ ∆  is 0.88. This value is deduced from the shifts 

[ ]298
M Tb(dtpa) Bω∆ 0  given in Table 10 and [ ]298

M Dy(dtpa) Bω∆ 0 = 1.47×105 rad s-1 T-1 
reported in Table 3 of Vander Elst et al. and adjusted to fit the experimental relaxivity . It is 
in excellent agreement with the expected value 0.86 for isostructural complexes. However, at 
298 K, the ratio 

2r

[ ] [ ]r rTb(dtpa) Dy(dtpa)ω ω∆ ∆ = 0.73 calculated from the values of Table 10 
is somewhat too small for these complexes with very fast exchanging water molecules.  
 
 
V. Experimental limits of applicability of the method 
 
These limits are determined by the accuracy of the measurements of 1pR , 2pR , and I Iω ω∆ . 
The accuracy is improved by increasing the field to get larger values of 1pR , 2pR  and Iω∆  
and by using perdeuterated solvent like D2O to get smaller diamagnetic corrections 10R  and 

20R . Moreover, the ratio 2p 1p 1 1R R T T ρ≅  increases with field as shown in Table 5. This 

increase is caused by the term 2
M M M( ) xω τ∆ = ∆ω  in the expression (8) of 2pR . It is 

particularly favourable because it reduces the influence in eqn. (9) of the correction term that 
is proportional to 1pR  and only approximate. Thus, especially at very high field, accurate PRE 
values can be obtained for the paramagnetic Ln3+ ions of the second series (Tb3+ to Yb3+) 
because of their large values9,16 of 2

effµ  and Mω∆ , even if the concentration c of Ln3+ 
complexes is low, down to 0.2 mM for the exchange of water and 1 mM for the exchange of 
molecules like methanol with protons that are more distant to the paramagnetic ion. The 
measurement of accurate I Iω ω∆  values typically requires I Iω ω∆ ≥  0.01 ppm, i.e.,  1 c ≥
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and 10 mM, respectively for the exchange of water and of a weakly coordinating molecule 
 like methanol.  IM

Turn to a Ln3+ ion of the first series (Ce3+ to Nd3+), which is "truly" paramagnetic in 
the sense that it has a total angular momentum of its ground multiplet , so that eqn. (1) 
holds. This excludes Eu3+. The 

0J ≠
Mω∆  values of these Ln3+ ions are about 10 times smaller9 

than that of Tb3+, leading to induced shifts Iω∆  that are also ten times smaller than the Tb3+ 
induced shift, but can still be measured with accuracy as shown by the methanol study. Their 
rates ,  given by eqn. (B2) and their  values are 102 times smaller than 
their Tb3+ counterparts.  According to eqns. (3), (5), (7), their IS-PREs are also 102 times 
smaller than those due to Tb3+ for the same concentration c of complexes. Thus, their PREs 

Curie
1MR Curie

2MR ( 2
Mω∆ )

2pR are expected to be of the order of 1 s-1 for c ≅  25 mM in the case of the water protons in 
D2O at 298 K. They can still be measured with accuracy given the small values of the 
diamagnetic corrections 20 10R R≅  reported in Table 1 ( 10R ≅  0.025 s-1 at 298 K). The 
applicability of the method can be further checked by considering the very unfavourable case 
of Nd(dtpa), since Nd3+ has the smallest Mω∆  value9 in addition to a particularly long 
electronic relaxation time23 0Sτ  that invalidates the inequalities  used to assess 
the fundamental eqn. (9). The general method sketched in section 5 to justify eqn. (9) is used 
now for the water protons. Assume the values2,5-7  = 0.31 nm,  = 0.4 nm and 

SBM Curie
MR Rα α< M

Ir LnHa

R 80τ = ps, = 2.2×10-5 cm2 s-1 at 298 K. Further assume that D Mτ  in Nd(dtpa) is about 3 
times longer than in Tb(dtpa) as in the series of Ln(dtpa-bma) complexes,2 so that Mτ = 180 ns 
at 298 K. For Iν  = 500 MHz, from eqn. (A2), we have  = 76 s-1,  = 92 s-1. From 
eqn. (A3), if the electronic spin relaxation time 

Curie
1MR Curie

2MR

0Sτ  of Nd3+ in Nd(dtpa) has the rather large, 
but still reasonable, unfavourable value16,23 0Sτ  = 0.2 ps, the SBM intramolecular relaxation 
rates are  =  = 250 s-1. The fast exchange hypothesis SBM

1MR SBM
2MR 1M 2M MT T τ≥ >>  at the basis 

of our method is fully satisfied. For c = 25 mM, the exact value 0.65 s-1 of 2pR  given by eqn. 
(8) differs from its estimate derived from eqn. (9) by about 3 %. The term Ix ω∆  in eqn. (9) is 
dominant, so that the exact value of Mτ  differs by less than 5 % from its approximation 
obtained as the solution of eqns. (9) and (10) with 1pR , 2pR , Iω∆  calculated from eqns (2) to 
(6) with the relaxation model of Appendix B. Thus, the method should apply to the 
complexed Ln3+ ions of the first series at moderate Ln3+ concentrations. Furthermore, the Ln3+ 
complexes corresponding to the Gd3+ complexes serving as MRI contrast agents are soluble in 
water at concentrations higher than 500 mM. The proposed method can be used with Ln3+ 
concentrations more than 10 times larger than those considered in the present study, leading 
to similar increases of the PREs. Then, even the PREs of the Ln3+ ions of the first series 
should largely dominate the measured relaxation rates and be accurately measured. Of course, 
if large concentrations c of paramagnetic Ln3+ ions are employed, the diamagnetic corrections 

10R  and 20R  have to be determined in the presence of the same concentrations of the 
diamagnetic La3+ or  Lu3+ corresponding complexes.  

Now, consider the role of the formation constant of the ( )Ln LI q
M  complex. When 

this formation constant increases, the ratio ( ) [ ]Ln LI q
f ⎡ ⎤≡ ⎣ ⎦M M I  becomes larger than 

, giving rise to favourable enhancements Pc 1pR , 2pR , and I Iω ω∆ . In addition, if the fast 
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exchange condition M Mω τ∆ ≤  1 still applies, the resulting enhancements of 1pR , 2pR , and 

I Iω ω∆  per mM of added LnL complexes should be a few orders of magnitude larger than 
for methanol, so that the Ln3+ concentration required for their accurate measurements could 
be reduced in the same proportion. Finally, consider a weakly coordinating molecule  at a 
10 µM concentration that can be rather easily observed on a spectrometer operating at 800 
MHz and equipped with a cold probe. Then, the concentration of  adducts is 

about 10 ×10 µM = 2 nM and the number of 

IM

( )Ln LI q
M

P ( )Ln LI q
M  complexes in a 500 µl NMR 

sample is 1 pico-mole. The possibility of evidencing such a tiny quantity of species by an 
NMR method is worth noting.  
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