Electronic Supplementary Information

HCO Formation in the Thermal Unimolecular Decomposition of Glyoxal: Rotational and Weak Collision Effects

G. Friedrichs, M. Colberg, J. Dammeier

Institut für Physikalische Chemie, Olshausenstr. 40, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany

T. Bentz, M. Olzmann

Institut für Physikalische Chemie, Kaiserstr. 12, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

TABLE SI-1: Experimental data. Shock tube experiments with HCO detection (FM spectroscopy) for the investigation of the rate constant of the HCO forming thermal decomposition channel 1d at high total density $(\bar{\rho} = 1.43 \times 10^{-5} \text{ mol/cm}^3, \bar{p} = 1.60 \text{ bar}).$

T/K	$p \ /mbar$	$\rho \ /({\rm mol/cm^3})$	$x_0((CHO)_2) \ /\%$	$k_{\rm II}{}^a/{ m s}^{-1}$	$k_{\rm I}{}^b/{ m s}^{-1}$	$k_{\rm 1d}/{\rm s}^{-1}$	$(k_{\rm 1d}/k_{\rm total})^c/\%$
1106	1251	1.36×10^{-5}	0.98			4.8×10^{1}	12.5
1268	1477	1.40×10^{-5}	0.98	2.8×10^3	1.1×10^4	1.3×10^3	16.3
1282	1613	1.51×10^{-5}	0.98	4.5×10^3	1.8×10^4	1.5×10^3	15.2
1291	1633	1.52×10^{-5}	0.98	1.1×10^4	4.6×10^4	2.7×10^3	21.9
1304	1550	1.43×10^{-5}	1.13	1.1×10^4	4.3×10^4	3.0×10^3	20.4
1354	1490	1.32×10^{-5}	0.75	2.0×10^4	5.9×10^4	7.9×10^3	24.5
1372	1685	1.48×10^{-5}	0.98	1.8×10^4	8.9×10^4	7.4×10^3	19.1
1410	1499	1.28×10^{-5}	0.98			1.5×10^4	22.4
1416	1650	1.40×10^{-5}	0.98			2.2×10^4	28.1
1440	1814	1.52×10^{-5}	0.98	4.6×10^4	2.1×10^5	1.7×10^4	18.2
1480	1770	1.44×10^{-5}	1.13	7.2×10^4	2.4×10^5	3.6×10^4	22.5
1258	1636	1.56×10^{-5}	1.68	4.7×10^3	1.2×10^4	9.4×10^{2}	14.2
1274	1689	1.59×10^{-5}	2.01	6.4×10^3	2.4×10^4	2.2×10^3	23.0
1289	1500	1.40×10^{-5}	2.01	7.0×10^3	2.8×10^4	2.3×10^3	19.8
1329	1589	1.44×10^{-5}	2.01	1.4×10^4	5.8×10^4	5.0×10^3	22.7
1344	1726	1.54×10^{-5}	2.01	1.8×10^4	7.7×10^4	5.6×10^3	20.9
1350	1523	1.36×10^{-5}	2.05	4.1×10^4	1.2×10^5	1.1×10^4	32.3
1394	1387	1.20×10^{-5}	1.68	3.6×10^4	1.3×10^5	1.3×10^4	23.6
1410	1554	1.28×10^{-5}	1.68	3.8×10^4	1.5×10^5	1.4×10^4	21.2
1415	1708	1.45×10^{-5}	1.68	6.5×10^4	2.3×10^5	1.0×10^4	15.3
1423	1867	1.58×10^{-5}	1.68	5.5×10^4	$2.2\ \times 10^5$	1.6×10^4	20.6

 a $k_{\rm II}$ value based on an evaluation assuming decomposition channels 1b and 1d (scenario II). b $k_{\rm I}$ value based on an evaluation assuming decomposition channels 1a and 1d (scenario I). c $k_{1a+1b+1c}$ taken from (CHO)₂ measurements.

TABLE SI-2: Experimental data. Shock tube experiments with HCO detection (FM spectroscopy) for the investigation of the rate constant of the HCO forming thermal decomposition channel 1d at low total density $(\bar{\rho} = 2.19 \times 10^{-6} \text{ mol/cm}^3, \bar{p} = 249 \text{ mbar}).$

T/K	$p \ /mbar$	$\rho / (mol/cm^3)$	$x_0((CHO)_2) \ /\%$	$k_{\rm II}{}^a/{\rm s}^{-1}$	$k_{\rm I}{}^b/{ m s}^{-1}$	$k_{\rm 1d}/{\rm s}^{-1}$	$(k_{\rm 1d}/k_{\rm total})^c/\%$
1333	240	2.17×10^{-6}	1.00	3.3×10^3	8.7×10^3	1.1×10^{3}	10.2
1360	245	2.17×10^{-6}	1.00	6.5×10^3	2.2×10^4	1.5×10^3	10.3
1377	250	2.18×10^{-6}	1.00	4.4×10^3	1.7×10^4	1.4×10^3	8.2
1185	270	2.74×10^{-6}	2.00			8.2×10^1	5.2
1264	262	2.49×10^{-6}	2.00	3.7×10^3	1.1×10^4	5.0×10^2	10.5
1275	261	2.46×10^{-6}	2.00	1.5×10^3	4.9×10^4	3.2×10^2	6.1
1288	239	2.23×10^{-6}	2.00	3.3×10^3	1.1×10^4	5.6×10^2	8.9
1301	258	2.39×10^{-6}	2.00	2.4×10^3	7.2×10^3	7.3×10^2	9.7
1320	236	2.15×10^{-6}	2.00	2.2×10^3	8.6×10^3	8.6×10^2	9.3
1336	251	2.26×10^{-6}	2.00	2.2×10^3	6.8×10^3	1.1×10^{3}	9.9
1336	249	2.24×10^{-6}	2.00	3.4×10^3	9.0×10^3	1.1×10^3	9.9
1340	250	2.24×10^{-6}	2.00	4.5×10^3	1.3×10^4	1.1×10^3	9.5
1368	234	2.06×10^{-6}	2.00	4.1×10^{9}	1.2×10^4	1.2×10^3	7.8
1438	267	2.23×10^{-6}	2.00	2.0×10^4	6.0×10^4	3.1×10^3	9.7
1455	261	2.16×10^{-6}	2.00	2.2×10^4	6.5×10^4	5.4×10^3	13.7
1509	249	1.98×10^{-6}	2.00	2.0×10^4	7.9×10^4	7.9×10^3	12.4
1519	249	1.97×10^{-6}	2.00	2.0×10^4	7.9×10^4	6.9×10^3	10.2
1562	240	1.85×10^{-6}	2.00	3.7×10^4	1.1×10^5	1.1×10^4	11.2
1630	232	1.71×10^{-6}	2.00	3.4×10^4	1.4×10^5	2.2×10^4	12.9

 a $k_{\rm II}$ value based on an evaluation assuming decomposition channels 1b and 1d (scenario II). b $k_{\rm I}$ value based on an evaluation assuming decomposition channels 1a and 1d (scenario I). c $k_{1a+1b+1c}$ taken from (CHO)₂ measurements.

TABLE SI-3: Experimental data. Shock tube experiments with $(CHO)_2$ detection (UV absorption) for the investigation of the rate constant $k_{1a+1b+1c} = (k_{\rm I} + k_{\rm II})/2$ of the molecular thermal decomposition channels at high total density ($\bar{\rho} = 1.57 \times 10^{-5}$ mol/cm³, $\bar{p} = 1.70$ bar).

T/K	$p \ /\mathrm{mbar}$	ho /(mol/cm ³)	$x_0((CHO)_2) \ /\%$	$k_{\rm II}^a/{ m s}^{-1}$	$k_{\rm I}{}^b/{ m s}^{-1}$
1212	1642	1.78×10^{-5}	0.50	1.4×10^{3}	1.8×10^{3}
1240	1804	1.75×10^{-5}	0.53	3.5×10^3	5.3×10^3
1265	1755	1.67×10^{-5}	0.53	5.0×10^{3}	6.7×10^3
1281	1675	1.57×10^{-5}	0.50	4.7×10^{3}	6.3×10^3
1294	1708	1.59×10^{-5}	0.50	7.2×10^{3}	8.0×10^3
1359	1727	1.53×10^{-5}	0.53	3.1×10^{4}	3.5×10^4
1366	1618	1.42×10^{-5}	0.53	2.1×10^4	2.3×10^4
1368	1871	1.65×10^{-5}	0.53	3.3×10^4	4.0×10^4
1448	1640	1.36×10^{-5}	0.53	5.8×10^{4}	6.1×10^{9}
1250	1676	1.61×10^{-5}	1.11	4.5×10^{3}	6.4×10^{3}
1309	1688	1.55×10^{-5}	1.11	1.4×10^{4}	1.7×10^4
1316	1824	1.67×10^{-5}	1.11	1.3×10^{4}	1.7×10^4
1392	1730	1.49×10^{-5}	1.11	5.2×10^{4}	6.7×10^4
1393	1599	1.38×10^{-5}	1.11	2.8×10^{4}	3.9×10^4
1461	1584	1.30×10^{-5}	1.11	5.6×10^{4}	6.5×10^4
1201	1759	1.76×10^{-5}	1.98	2.1×10^3	3.0×10^3
1208	1511	1.50×10^{-5}	2.00	2.0×10^{3}	2.9×10^3
1215	1795	1.78×10^{-5}	1.98	2.3×10^{3}	3.0×10^3
1246	1521	1.47×10^{-5}	2.00	2.2×10^{3}	2.9×10^3
1255	1684	1.61×10^{-5}	2.00	1.0×10^{4}	1.3×10^4
1285	1731	1.62×10^{-5}	2.01	6.5×10^{3}	8.1×10^{3}
1295	1690	1.57×10^{-5}	2.01	1.6×10^{4}	1.9×10^4
1338	1869	1.68×10^{-5}	2.01	2.2×10^4	2.5×10^4
1350	1746	1.56×10^{-5}	2.01	4.7×10^{4}	6.2×10^4

 a $k_{\rm II}$ value based on an evaluation assuming decomposition channels 1b and 1d (scenario II). b $k_{\rm I}$ value based on an evaluation assuming decomposition channels 1a and 1d (scenario I).

TABLE SI-4: Experimental data. Shock tube experiments with $(CHO)_2$ detection (UV absorption) for the investigation of the rate constant $k_{1a+1b+1c} = (k_I + k_{II})/2$ of the molecular thermal decomposition channels at low total density ($\bar{\rho} = 2.57 \times 10^{-6} \text{ mol/cm}^3$, $\bar{p} = 281 \text{ mbar}$).

T/K	$p \ /\mathrm{mbar}$	ho /(mol/cm ³)	$x_0((CHO)_2) \ /\%$	$k_{\mathrm{II}}{}^{a}/\mathrm{s}^{-1}$	$k_{\rm I}{}^b/{\rm s}^{-1}$
1198	299	3.00×10^{-6}	1.93	1.8×10^{3}	1.9×10^3
1225	280	2.75×10^{-6}	1.93	2.2×10^3	2.7×10^3
1239	298	2.89×10^{-6}	1.93	4.0×10^{3}	4.6×10^{3}
1289	270	2.52×10^{-6}	1.93	3.8×10^3	4.3×10^3
1298	287	2.66×10^{-6}	1.93	9.6×10^{3}	1.0×10^4
1307	305	2.81×10^{-6}	1.93	9.6×10^{3}	9.6×10^3
1308	279	2.57×10^{-6}	1.93	5.1×10^{3}	6.7×10^3
1320	277	2.52×10^{-6}	1.93	1.1×10^4	1.2×10^4
1336	298	2.68×10^{-6}	1.93	7.8×10^{3}	9.9×10^3
1345	269	2.41×10^{-6}	1.93	1.8×10^{4}	1.9×10^4
1410	269	2.29×10^{-6}	1.93	2.3×10^4	2.5×10^4
1418	253	2.15×10^{-6}	1.93	1.7×10^{4}	2.0×10^4
1453	263	2.18×10^{-6}	1.93	3.5×10^4	4.1×10^4

 a $k_{\rm II}$ value based on an evaluation assuming decomposition channels 1b and 1d (scenario II). b $k_{\rm I}$ value based on an evaluation assuming decomposition channels 1a and 1d (scenario I).

TABLE SI-5: Experimental data. Shock tube experiments with H detection (H-ARAS) for the investigation of the thermal decomposition channels (1a+1b+1c) and 1d at high total density (first 8 points: $\bar{\rho} = 1.73 \times 10^{-5} \text{ mol/cm}^3$, $\bar{p} = 1.67 \text{ bar}$).

T/K	$p\ /{\rm mbar}$	$\rho \; / ({\rm mol/cm^3})$	$x_0((CHO)_2) / ppm$	$k_{1a+1b+1c}/s^{-1}$	$k_{\rm 1d}/{\rm s}^{-1}$	$\frac{(d[{\rm H}]/dt)_0}{2[({\rm CHO})_2]_0}$	$k_{ m 1d}/k_{ m total}$
1032	1616	1.89×10^{-5}	12.2		7.6×10^0	6.8×10^{0}	
1085	1655	1.83×10^{-5}	12.2	2.9×10^2	2.4×10^1	2.2×10^1	0.076
1108	1685	1.83×10^{-5}	12.2	7.3×10^2	6.0×10^1	5.5×10^1	0.076
1136	1763	1.84×10^{-5}	12.2	1.2×10^3	1.2×10^2	1.0×10^2	0.091
1206	1688	1.68×10^{-5}	12.2	3.5×10^3	4.4×10^2	3.7×10^2	0.111
1230	1625	1.59×10^{-5}	12.2	5.4×10^{3}	6.5×10^2	5.6×10^2	0.107
1262	1687	1.61×10^{-5}	12.2	1.1×10^4	1.3×10^3	7.9×10^2	0.105
1298	1654	1.53×10^{-5}	7.4	1.5×10^{4}	2.6×10^3	1.5×10^3	0.147
1389	1736	1.44×10^{-5}	7.4				0.111
1459	1576	1.30×10^{-5}	7.4				0.191
1488	1607	1.30×10^{-5}	7.4				0.181
1657	1565	1.14×10^{-5}	7.4				0.215
1838	1524	9.97×10^{-6}	7.4				0.285
1890	1505	9.58×10^{-6}	7.4				0.306
2054	1411	8.27×10^{-6}	7.4				0.311
2210	1371	7.46×10^{-6}	7.4				0.365
2320	1341	6.95×10^{-6}	7.4				0.402

TABLE SI-6: Experimental data. Shock tube experiments with H detection (H-ARAS) for the investigation of the thermal decomposition channels (1a+1b+1c) and 1d at low total density (first 8 points: $\bar{\rho} = 4.15 \times 10^{-6} \text{ mol/cm}^3$, $\bar{p} = 413 \text{ mbar}$).

T / K	$p\ /{\rm mbar}$	$\rho \; / (\rm mol/cm^3)$	$x_0((CHO)_2) / ppm$	$k_{1a+1b+1c}/s^{-1}$	$k_{\rm 1d}/{\rm s}^{-1}$	$\frac{(d[{\rm H}]/dt)_0}{2[({\rm CHO})_2]_0}$	$k_{ m 1d}/k_{ m total}$
1059	433	4.92×10^{-6}	39.9		3.0×10^0	2.5×10^{0}	
1101	430	4.70×10^{-6}	39.9		1.1×10^1	9.9×10^0	
1131	408	4.34×10^{-6}	39.9	1.0×10^3	2.5×10^1	2.2×10^1	0.024
1201	419	4.20×10^{-6}	39.9	2.2×10^3	9.7×10^1	8.4×10^{1}	0.042
1208	407	4.05×10^{-6}	39.9	2.3×10^3	1.1×10^2	8.1×10^1	0.048
1290	426	3.97×10^{-6}	39.9	7.1×10^{3}	3.9×10^2	2.9×10^2	0.055
1305	392	3.62×10^{-6}	39.9	9.8×10^{3}	5.1×10^2	3.4×10^2	0.052
1370	387	3.40×10^{-6}	39.9	1.6×10^4	1.0×10^3	6.5×10^2	0.062
1439	391	3.27×10^{-6}	39.9				0.086
1490	393	3.17×10^{-6}	39.9				0.086
1495	418	3.36×10^{-6}	12.2				0.078
1580	377	2.87×10^{-6}	39.9				0.095
1667	371	2.68×10^{-6}	39.9				0.109
1772	369	2.51×10^{-6}	39.9				0.147
1941	375	2.35×10^{-6}	39.9				0.168
2106	374	2.14×10^{-6}	39.9				0.250

	trans-(CHO)_2	transition state			
		1a	1b	1d	
		CH_2O	TW	HCOH	
G3 critical energy, $E_0(J=0) / \text{ cm}^{-1}$	0	19376	21370	21232	
scaled critical energy $E_0(J=0) / \text{ cm}^{-1}$	0	19376	20500	20500	
vibrations, $\tilde{\nu}/ \ {\rm cm}^{-1}$	$(141)^{a}$	115	130	173	
	316	439	198	226	
	535^{b}	605	212	602	
	794	842	596	733	
	1025	974	704	770	
	1043	1006i	918	1217i	
	1283	1073	1272	1235	
	1328	1289	1346	1282	
	1657	1437	1510i	1453	
	1670	1586	1680	1770	
	2855	1990	1894	1951	
	2860	2892	1909	2874	
rotational constants / $\rm cm^{-1}$	1.865	1.564	1.666	1.270	
	0.158	0.157	0.119	0.141	
	0.146	0.146	0.114	0.127	
symmetry number, enantiomers	2, 1	1, 2	2, 2	1, 1	

TABLE SI-7: RRKM parameters for glyoxal decomposition channels with *tight* transition state. Molecular structures and vibrational frequencies (0.9496 scaling factor¹) are based on MP2/6-311G(d,p) and the critical energy on G3 calculations.^{2,3}.

 a treated as hindered internal rotor, see text; b reaction coordinate.

TABLE SI-8: Correlation scheme and molecular parameters for simplified SACM model of HCO forming thermal decomposition channel of glyoxal, $(CHO)_2 + M \rightarrow 2 HCO + M$ (1d). Molecular structures and vibrational frequencies $(0.9496 \text{ scaling factor}^1)$ are based on MP2/6-311G(d,p) and the critical energy on G3 calculations.

cal top

^{*a*} estimated from critical constants of $(CHO)_2$.

TABLE SI-9: Energy levels (cm⁻¹) of the hindered internal rotator^{*a*} for energies up to 90000 cm⁻¹ (reduced rotational constant $B_{\rm red} = 1.862 \text{ cm}^{-1}$).

59.00	155 45	957 40	250.27	450.00	FF7 00	CEE ED	752.04	940.97
046.00	155.45 1041.41	207.49	308.37 1990.99	438.20 1222.70	001.28 1414.69	000.02	1505.04	849.87 1512.11
940.00	1041.41 1504.05	1130.00 1672.20	1229.00 1692.01	1522.79	1414.00 1760.46	1431.27	1903.43	1010.11
1095.40	1094.90	1072.29	1065.01	1749.84	1709.40 2114.71	1620.00	1804.00	1900.84
1950.54	1974.00	2010.38	2043.47	2093.73	2114.71	2107.30	2101.20	2230.33
2244.27	2299.24	2301.95	2552.69	2000.04	2404.87	2400.03	2400.41	2407.02
2030.98	2030.18	2011.77	2011.82	2093.04	2093.05	2119.31	2119.31	2870.49
2870.49	2900.21	2900.21	3000.37	3000.37	3170.88	3170.88	3279.02	3279.02
3392.55	3392.55	3509.58	3509.58	3630.69	3030.09	3755.83	3755.83	3884.96
3884.96	4018.05	4018.05	4155.09	4155.09	4296.04	4296.04	4440.89	4440.89
4589.62	4589.62	4742.22	4742.22	4898.67	4898.67	5058.96	5058.96	5223.09
5223.09	5391.05	5391.05	5562.81	5562.81	5738.39	5738.39	5917.77	5917.77
6100.94	6100.94	6287.90	6287.90	6478.65	6478.65	6673.18	6673.18	6871.49
6871.49	7073.57	7073.57	7279.42	7279.42	7489.03	7489.03	7702.41	7702.41
7919.56	7919.56	8140.46	8140.46	8365.11	8365.11	8593.53	8593.53	8825.69
8825.69	9061.61	9061.61	9301.27	9301.27	9544.69	9544.69	9791.85	9791.85
10042.76	10042.76	10297.41	10297.41	10555.80	10555.80	10817.94	10817.94	11083.81
11083.81	11353.43	11353.43	11626.79	11626.79	11903.88	11903.88	12184.72	12184.72
12469.29	12469.29	12757.59	12757.59	13049.64	13049.64	13345.42	13345.42	13644.93
13644.93	13948.18	13948.18	14255.16	14255.16	14565.87	14565.87	14880.32	14880.32
15198.50	15198.50	15520.41	15520.41	15846.06	15846.06	16175.43	16175.43	16508.54
16508.54	16845.38	16845.38	17185.95	17185.95	17530.25	17530.25	17878.28	17878.28
18230.04	18230.04	18585.53	18585.53	18944.74	18944.74	19307.69	19307.69	19674.37
19674.37	20044.77	20044.77	20418.91	20418.91	20796.77	20796.77	21178.36	21178.36
21563.68	21563.68	21952.72	21952.72	22345.50	22345.50	22742.00	22742.00	23142.23
23142.23	23546.19	23546.19	23953.87	23953.87	24365.28	24365.28	24780.42	24780.42
25199.29	25199.29	25621.88	25621.88	26048.20	26048.20	26478.25	26478.25	26912.02
26912.02	27349.52	27349.52	27790.75	27790.75	28235.70	28235.70	28684.38	28684.38
29136.79	29136.79	29592.92	29592.92	30052.78	30052.78	30516.36	30516.36	30983.67
30983.67	31454.71	31454.71	31929.47	31929.47	32407.96	32407.96	32890.17	32890.17
33376.11	33376.11	33865.77	33865.77	34359.16	34359.16	34856.28	34856.28	35357.12
35357.12	35861.69	35861.69	36369.98	36369.98	36882.00	36882.00	37397.75	37397.75
37917.21	37917.21	38440.41	38440.41	38967.33	38967.33	39497.97	39497.97	40032.35
40032.35	40570.44	40570.44	41112.26	41112.26	41657.81	41657.81	42207.08	42207.08
42760.08	42760.08	43316.80	43316.80	43877.24	43877.24	44441.42	44441.42	45009.31
45009.31	45580.94	45580.94	46156.28	46156.28	46735.35	46735.35	47318.15	47318.15
47904.67	47904.67	48494.92	48494.92	49088.89	49088.89	49686.59	49686.59	50288.01
50288.01	50893.16	50893.16	51502.03	51502.03	52114.62	52114.62	52730.94	52730.94
53350.99	53350.99	53974.76	53974.76	54602.25	54602.25	55233.47	55233.47	55868.42
55868.42	56507.09	56507.09	57149.48	57149.48	57795.60	57795.60	58445.44	58445.44
59099.01	59099.01	59756.30	59756.30	60417.32	60417.32	61082.06	61082.06	61750.53
61750.53	62422.72	62422.72	63098.64	63098.64	63778.28	63778.28	64461.64	64461.64
65148.73	65148.73	65839.55	65839.55	66534.08	66534.08	67232.35	67232.35	67934.34
67934.34	68640.05	68640.05	69349.49	69349.49	70062.65	70062.65	70779.53	70779.53
71500.14	71500.14	72224.48	72224.48	72952.54	72952.54	73684.32	73684.32	74419.83
74419.83	75159.06	75159.06	75902.02	75902.02	76648.70	76648.70	77399.11	77399.11
78153.24	78153.24	78911.10	78911.10	79672.68	79672.68	80437.98	80437.98	81207.01
81207.01	81979.76	81979.76	82756.24	82756.24	83536.44	83536.44	84320.37	84320.37
85108.02	85108.02	85899.40	85899.40	86694.50	86694.50	87493.32	87493.32	88295.87
88295.87	89102.14	89102.14	89912.14	89912.14				

^a Fourier expansion of the torsional potential of glyoxal (MP2/6-311G(d,p), where $\phi = 0$ corresponds to the trans-glyoxal isomer: $V(\phi)/\text{cm}^{-1} = \sum_{n=0}^{6} b_n \cos(n \phi)$ with $b_0 = 1416.22$, $b_1 = -727.20$, $b_2 = -778.60$, $b_3 = 38.72$, $b_4 = 68.19$, $b_5 = -6.50$, $b_6 = -10.83$).

TABLE SI-10: Pressure dependence of reactions 1a–1d: Chemkin⁵ input format for Chebyshev polynomials.[‡]

```
C2H2O2 (+M) <=> CH2O + CO (+M)
                                    1.0 0.0 0.0
TCHEB/ 800. 2500. / PCHEB/ 9.87E-4 98.7 /
CHEB/ 4 4 /
CHEB/ 2.448
                           -1.823E-1
                 1.014
                                       1.643E-2/
CHEB/ 3.971
                 6.341E-1
                           1.820E-2
                                     -6.206E-3/
CHEB/ -3.926E-1 4.486E-2
                            2.783E-2
                                       7.470E-3/
CHEB/ -9.117E-2 -2.928E-2
                           9.074E-4
                                       3.457E-3/
C2H2O2 (+M) <=> H2 + 2 CO (+M)
                                   1.0 0.0 0.0
TCHEB/ 800. 2500. / PCHEB/ 9.87E-4 98.7 /
CHEB/ 4 4 /
CHEB/ 1.934
                 1.564
                           -3.222E-1
                                       4.544E-2/
CHEB/ 4.196
                 6.773E-1
                           5.283E-2 -4.904E-3/
CHEB/ -4.010E-1 1.327E-2
                           3.032E-2
                                      9.066E-3/
CHEB/ -8.817E-2 -3.386E-2
                           5.520E-4
                                       2.635E-3/
C2H2O2 (+M) <=> HCOH + CO (+M)
                                   1.0 0.0 0.0
TCHEB/ 800. 2500. / PCHEB/ 9.87E-4 98.7 /
CHEB/ 4 4 /
CHEB/ 1.358
                 1.456
                           -3.101E-1
                                      4.624E-2/
CHEB/ 4.123
                 6.779E-1
                            3.840E-2 -4.933E-3/
CHEB/ -4.105E-1 2.746E-2
                            2.811E-2
                                       9.274E-3/
CHEB/ -8.727E-2 -3.268E-2
                            8.627E-4
                                       2.765E-3/
C2H2O2 (+M) <=> 2 HCO (+M)
                                   1.0 0.0 0.0
TCHEB/ 800. 2500. / PCHEB/ 9.87E-4 98.7 /
CHEB/ 4 4 /
CHEB/ 4.903E-1 3.936
                         -1.080
                                     1.412E-1/
CHEB/ 4.818
                4.349E-1 1.747E-1 -1.119E-2/
CHEB/ -3.698E-1 -7.146E-2 4.338E-2
                                     4.738E-3/
CHEB/ -6.307E-2 -5.084E-2 7.064E-3
                                     1.716E-3/
```

The used temperature mapping according to $\tilde{T} = (2T^{-1} - T_{\min}^{-1} - T_{\max}^{-1})/(T_{\max}^{-1} - T_{\min}^{-1})$ is consistent with the data input requirements of Chemkin versions 4.0 and 4.1. For an alternative temperature mapping according to $\tilde{T} = (2T^{-1} - T_{\min}^{-1} - T_{\min}^{-1})/(T_{\min}^{-1} - T_{\max}^{-1})$, the signs of the parameters a_{2m} and a_{4m} have to be changed.

References

- ¹ A. P. Scott and L. Radom, Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem. 100 (1996):16502–16513.
- ² X. Li, J. M. Millam and H. B. Schlegel, Glyoxal Photodissociation. An ab initio direct classical trajectory study of $C_2H_2O_2 \rightarrow H_2 + 2 CO$, J. Chem. Phys. 114 (2001):8897–8904.
- ³ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2004.
- ⁴ A. Burcat and B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with updates from Active Thermochemical Tables, ANL-05/20 and TAE 960, Technion-IIT, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division, September 2005, http://garfield.chem.elte.hu/Burcat/burcat.html.
- ⁵ R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, S. F. Miller, P. Ho and D. J. Young, Chemkin Release 4.0.1, Reaction Design Inc., San Diego, CA, 2004.