Parameter		Theor	retical		Experii	nental ^b	Parameter	Theoretical			Experimental ^b		
	I	Ξ	Z	2					Ε		Ζ		
	DFT	MP2	DFT	MP2	X-ray	Neutron		DFT	MP2	DFT	MP2	X-ray	Neutron
	DII	1011 2	DII	1011 2	diffraction	diffraction		DII	1011 2	DII	1011 2	diffraction	diffraction
Bond length / pm							Bond length / pm						
N_1 - C_2	133.5	134.4	133.3	134.2	133.7	134.1	C_5-C_6	139.5	140.1	139.3	139.9	137.5	138.3
N_1-C_6	133.6	134.4	133.8	134.5	133.2	133.8	C ₅ -H ₉	108.4	108.6	108.3	108.6	93.0	108.2
C_2-C_3	139.9	140.3	140.1	140.3	139.0	138.4	$C_{6}-H_{10}$	108.6	108.8	108.6	108.8	100.0	107.7
C ₂ -H ₇	108.7	108.8	108.5	108.7	93.0	107.4	C_{11} - N_{12}	136.9	137.5	137.3	137.8	132.9	133.7
C_3-C_4	139.7	140.0	139.6	140.0	137.9	138.8	$C_{11}=O_{15}$	122.0	122.2	121.9	122.1	123.4	123.0
C_3-C_{11}	150.3	150.1	150.2	150.0	149.8	149.2	N_{12} - H_{13}	100.6	100.8	100.7	100.9	89.0	100.0
C_4-C_5	138.8	139.4	139.1	139.7	137.6	138.5	N_{12} - H_{14}	100.9	101.1	100.9	101.1	89.0	101.5
C_4 - H_8	108.3	108.6	108.5	108.7	102.0	109.2							
Bond angles / °							Bond angles / °						
$C_2 - N_1 - C_6$	117.4	116.9	117.5	117.0	117.3	118.0	C ₄ -C ₅ -H ₉	121.2	121.1	121.1	121.1	121.2	121.5
$N_1 - C_2 - C_3$	123.9	123.8	123.8	123.8	123.3	123.1	C ₆ -C ₅ -H ₉	120.3	120.1	120.4	120.1	120.6	120.2
N_1 - C_2 - H_7	115.2	115.7	117.1	116.8	117.3	115.4	$N_1 - C_6 - C_5$	123.4	123.7	123.5	123.7	123.7	123.1
C ₃ -C ₂ -H ₇	120.8	120.5	119.1	119.4	119.1	121.5	N_1 - C_6 - H_{10}	116.0	115.9	116.1	115.9	112.3	116.5
$C_2 - C_3 - C_4$	117.7	118.4	117.8	118.5	117.7	118.0	$C_5-C_6-H_{10}$	120.5	120.4	120.4	120.4	123.9	120.4
$C_2 - C_3 - C_{11}$	123.9	122.8	118.1	118.4	123.8	124.1	$C_3 - C_{11} - N_{12}$	116.5	115.0	116.1	114.6	117.9	117.8
$C_4 - C_3 - C_{11}$	118.3	118.7	124.0	123.1	118.5	117.9	$C_3 - C_{11} = O_{15}$	121.5	121.8	121.9	122.1	119.1	119.7
$C_3 - C_4 - C_5$	118.9	118.3	118.9	118.3	119.8	119.5	$N_{12}-C_{11}=O_{15}$	122.0	123.2	122.1	123.2	123.0	122.5
$C_3-C_4-H_8$	119.0	119.6	121.0	120.8	117.9	118.5	C_{11} - N_{12} - H_{13}	121.9	118.9	121.2	118.4	120.1	121.3
C ₅ -C ₄ -H ₈	122.1	122.1	120.1	120.9	122.4	122.0	C_{11} - N_{12} - H_{14}	116.7	115.6	116.2	115.3	122.5	118.5
C ₄ -C ₅ -C ₆	118.5	118.8	118.5	118.8	118.2	118.3	H ₁₃ -N ₁₂ -H ₁₄	117.8	116.7	117.3	116.3	-	119.1
Dihedral angles / °							Dihedral angles / °)					
$C_6 - N_1 - C_2 - C_3$	-0.1	0.0	-0.8	-0.7	-	0.1	$C_4 - C_3 - C_{11} - N_{12}$	-161.9	-151.4	-24.3	-33.3	-	-158.5
$C_6-N_1-C_2-H_7$	178.2	178.2	179.2	179.2	-	179.0	$C_4 - C_3 - C_{11} = O_{15}$	19.0	30.4	154.6	144.8	-	21.0
$C_2 - N_1 - C_6 - C_5$	-0.8	-1.1	0.1	0.1	-	-1.1	$C_3 - C_4 - C_5 - C_6$	0.5	-0.1	-0.2	-0.2	-	1.6
$C_2 - N_1 - C_6 - H_{10}$	179.5	179.6	-179.6	-179.6	-	178.7	$C_3-C_4-C_5-H_9$	-179.6	-179.7	179.2	179.2	-	-179.5
$N_1 - C_2 - C_3 - C_4$	1.2	1.1	1.0	0.8	-	0.4	$H_8-C_4-C_5-C_6$	-179.3	-179.3	-178.3	-178.4	-	-177.0
$N_1 - C_2 - C_3 - C_{11}$	179.6	-179.9	179.7	-180.0	-	179.0	$H_8-C_4-C_5-H_9$	0.6	1.0	1.1	0.9	-	2.0
$H_7-C_2-C_3-C_4$	-177.0	-177.0	-179.0	-179.1	-	-177.5	$C_4 - C_5 - C_6 - N_1$	0.6	1.2	0.4	0.3	-	-0.2
$H_7-C_2-C_3-C_{11}$	1.4	2.0	-0.4	0.1	-	1.2	$C_4-C_5-C_6-H_{10}$	-179.7	-179.5	-179.9	-180.0	-	-180.0
$C_2 - C_3 - C_4 - C_5$	-1.3	-1.0	-0.5	-0.4	-	-1.7	$H_9-C_5-C_6-N_1$	-179.3	-179.2	-179.0	-179.0	-	-179.1
C_2 - C_3 - C_4 - H_8	178.5	178.3	177.6	177.9	-	176.9	$H_9-C_5-C_6-H_{10}$	0.4	0.1	0.7	0.7	-	1.1
$C_{11}-C_3-C_4-C_5$	-179.8	180.0	-179.71	-179.5	-	179.6	$C_3-C_{11}-N_{12}-H_{13}$	17.0	24.9	-20.5	-26.4	-	11.3
$C_{11}-C_3-C_4-H_8$	0.0	-0.7	-1.0	-1.3	-	-1.8	$C_3-C_{11}-N_{12}-H_{14}$	175.1	171.3	-174.0	-170.8	-	178.6
$C_2 - C_3 - C_{11} - N_{12}$	19.7	29.6	157.2	147.6	-	22.9	$O_{15} = C_{11} - N_{12} - H_{13}$	-163.9	-157.0	160.6	155.6	-	-168.1
$C_2 - C_3 - C_{11} = O_{15}$	-159.4	-148.6	-24.0	-34.4	-	-157.7	$O_{15} = C_{11} - N_{12} - H_{14}$	-5.7	-10.5	7.2	11.2	-	-0.8

TABLE S1. DFT(B3LYP)/6-311++G(d,p) and MP2/6-311++G(d,p) optimized structural parameters and experimental geometries for the two conformers of nicotinamide^a

^a See Scheme 1 for atom numbering. ^b Crystal data [23].

	Definition ^a	Approximate description
S_1	$v(N_1-C_2)+v(C_4-C_5)$	v ring 1
S_2	$v(N_1-C_2)-v(C_4-C_5)$	v ring 2
S_3	$v(C_2-C_3)+v(C_5-C_6)$	v ring 3
S_4	$v(C_2-C_3)-v(C_5-C_6)$	v ring 4
S_5	$v(C_3-C_4)+v(C_6-N_1)$	v ring 5
S_6	$v(C_3-C_4)-v(C_6-N_1)$	v ring 6
S_7	$v(C_3-C_{11})$	v(C-C)
S_8	$v(C_2-H_7)+v(C_6-H_{10})$	v(C-H)'1
S_9	$v(C_2-H_7)-v(C_6-H_{10})$	ν(С-Н)'2
\mathbf{S}_{10}	$v(C_4-H_8)+v(C_5-H_9)$	v(C-H)''1
S_{11}	$v(C_4-H_8)-v(C_5-H_9)$	ν(С-Н)''2
S_{12}	$v(C_{11}=O_{15})$	v(C=O)
S_{13}	$v(C_{11}-N_{12})$	v(C-N)
S_{14}	$v(N_{12}-H_{13})+v(N_{12}-H_{14})$	$\nu(NH_2)s$
S_{15}	$v(N_{12}-H_{13})-v(N_{12}-H_{14})$	$v(NH_2)as$
S_{16}	$\delta(C_2-N_1-C_6)-\delta(N_1-C_6-C_5)+\delta(C_6-C_5-C_4)-\delta(C_5-C_4-C_3)+\delta(C_4-C_3-C_2)-\delta(C_3-C_2-N_1)$	δ ring 1
S_{17}	$\delta(H_7 - C_2 - N_1) - \delta(H_7 - C_2 - C_3) + \delta(H_{10} - C_6 - C_5) - \delta(H_{10} - C_6 - N_1)$	δ(C-H)'1
S_{18}	$\delta(H_7-C_2-N_1)-\delta(H_7-C_2-C_3)-\delta(H_{10}-C_6-C_5)+\delta(H_{10}-C_6-N_1)$	δ(С-Н)'2
S_{19}	$\delta(H_8-C_4-C_3)-\delta(H_8-C_4-C_5)+\delta(H_9-C_5-C_4)-\delta(H_9-C_5-C_6)$	δ (C-H)"1
S_{20}	$\delta(H_8-C_4-C_3)-\delta(H_8-C_4-C_5)-\delta(H_9-C_5-C_4)+\delta(H_9-C_5-C_6)$	δ(С-Н)"2
S_{21}	$\delta(C_{11}-C_3-C_2)-\delta(C_{11}-C_3-C_4)$	w(C-C)
S_{22}	$2\delta(C_2-N_1-C_6)-\delta(N_1-C_6-C_5)-\delta(C_6-C_5-C_4)+2\delta(C_5-C_4-C_3)-\delta(C_4-C_3-C_2)-\delta(C_3-C_2-N_1)$	δ ring 2
S_{23}	$\delta(N_1-C_6-C_5)-\delta(C_6-C_5-C_4)+\delta(C_4-C_3-C_2)-\delta(C_3-C_2-N_1)$	δ ring 3
S_{24}	$\delta(O_{15}=C_{11}-N_{12})-\delta(O_{15}=C_{11}-C_{3})$	δ(C=O)
S_{25}	$2\delta(N_{12}-C_{11}-C_3)-\delta(O_{15}=C_{11}-N_{12})-\delta(O_{15}=C_{11}-C_3)$	δ(C-C-N)
S_{26}	$2\delta(H_{13}-N_{12}-H_{14})-\delta(H_{13}-N_{12}-C_{11})-\delta(H_{14}-N_{12}-C_{11})$	$\delta(NH_2)$
S_{27}	$\delta(H_{13}-N_{12}-C_{11})-\delta(H_{14}-N_{12}-C_{11})$	$W(NH_2)$
S_{28}	$\tau(N_1-C_2-C_3-C_4)-\tau(C_2-C_3-C_4-C_5)+\tau(C_3-C_4-C_5-C_6)-\tau(C_4-C_5-C_6-N_1)+\tau(C_5-C_6-N_1-C_2)$	τ ring 1
a	$-\tau(C_6-N_1-C_2-C_3)$	
S ₂₉	$2\tau(N_1-C_2-C_3-C_4)-\tau(C_2-C_3-C_4-C_5)-\tau(C_3-C_4-C_5-C_6)+2\tau(C_4-C_5-C_6-N_1)-\tau(C_5-C_6-N_1-C_2)$	τ ring 2
a	$-\tau(C_6-N_1-C_2-C_3)$	
S ₃₀	$\tau(C_2-C_3-C_4-C_5)-\tau(C_3-C_4-C_5-C_6)+\tau(C_5-C_6-N_1-C_2)-\tau(C_6-N_1-C_2-C_3)$	τ ring 3
S_{31}	$\tau(O_{15}-C_{11}-N_{12}-H_{13})+\tau(O_{15}-C_{11}-N_{12}-H_{14})$	τ (C-N)
S ₃₂	$\tau(O_{15}-C_{11}-C_3-C_2)+\tau(O_{15}-C_{11}-C_3-C_4)$	τ (C-C)
S ₃₃	$\gamma(C_{11}-(N_{12}-H_{14})-H_{13})$	$\gamma(NH_2)$
S ₃₄	$\gamma(H_8-(C_4-C_3)-C_5)+\gamma(H_9-(C_5-C_4)-C_6)$	γ(C-H)'1
S ₃₅	$\gamma(H_8-(C_4-C_3)-C_5)-\gamma(H_9-(C_5-C_4)-C_6)$	γ(C-H) ²
S_{36}	$\gamma(H_7-(C_2-N_1)-C_3)+\gamma(H_{10}-(C_6-C_5)-N_1)$	γ(C-H)''1
S ₃₇	$\gamma(H_7-(C_2-N_1)-C_3)-\gamma(H_{10}-(C_6-C_5)-N_1)$	γ(C-H)''2
S ₃₈	$\gamma(C_{11}-(C_3-C_2)-C_4)$	γ(C-C)
S ₃₉	$\gamma(O_{15}=(C_{11}-N_{12})-C_3)$	γ(C=O)

TABLE S2. Definition of internal coordinates used in the normal coordinate analysis of nicotinamide.

^a See Scheme 1 for atom numbering.; s, symmetric; as, anti-symmetric. Normalizing factors (*N*) are not provided; they can be calculated as $N_j = \sqrt{\sum_i \frac{1}{c_{ji}^2}}$, where *j* refers to the internal coordinate $\mathbf{S}_j = \sum_i c_{ji} s_i$ and s_i are the primitive internal coordinates: v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion.

Approximate Description	Calculated Wavenumber ^b	Intensity	PED ^c
v(NH ₂)as	3568	43	S ₁₅ (99)
$v(NH_2)s$	3446	48	S ₁₄ (99)
v(C-H)"1	3074	5	$S_{10}(91)$
v(C-H)"2	3059	8	$S_{11}(87)$
v(C-H)'1	3029	9	$S_8(60)+S_9(33)$
v(C-H)'2	3018	21	$S_9(65)+S_8(35)$
v(C=O)	1726	369	$S_{12}(77)$
v ring 1	1609	39	$S_1(43)+S_5(14)+S_{20}(12)+S_3(10)$
$\delta(NH_2)$	1601	142	$S_{26}(88)$
v ring 5	1587	6	$S_3(35)+S_5(32)+S_{18}(13)$
δ(C-H)'2	1490	2	$S_{18}(26) + S_{19}(25) + S_6(20)$
δ(C-H)'1	1431	29	$S_{17}(33)+S_4(19)+S_2(14)$
v(C-N)	1348	216	$S_{13}(30)+S_7(18)+S_{24}(14)+S_{19}(13)+S_{27}(10)$
δ(C-H)"1	1343	11	$S_{17}(46) + S_{19}(24)$
v ring 4	1273	8	$S_2(35)+S_6(27)+S_4(24)$
v ring 6	1212	11	$S_{18}(31)+S_6(20)+S_{20}(16)$
δ(C-H)"2	1141	15	$S_{20}(14) + S_{16}(12) + S_{1}(10)$
v ring 2	1118	4	$S_{20}(38)+S_2(24)+S_5(11)$
$w(NH_2)$	1070	6	$S_{27}(54)+S_{13}(24)+S_{12}(10)$
v ring 3	1046	1	$S_3(23)+S_1(19)+S_4(18)+S_5(12)+S_{19}(10)$
δ ring 1	1027	10	$S_{16}(68) + S_6(12)$
γ(C-H)'2	1002	1	$S_{35}(99) + S_{37}(15)$
γ(C-H)''2	976	1	$S_{37}(66) + S_{34}(19) + S_{35}(11)$
γ(C-H)"1	935	1	$S_{36}(75)+S_{34}(13)+S_{37}(19)$
γ(C-H)'1	833	10	$S_{34}(41)+S_{39}(17)+S_{38}(14)+S_{28}(11)$
v(C-C)	771	5	$S_{23}(34)+S_7(20)+S_5(12)$
γ (C=O)	741	42	$S_{39}(49)+S_{34}(21)+S_{31}(13)+S_{36}(10)$
τ ring 1	711	17	$S_{28}(100)$
$\delta(C=O)$	638	14	$S_{23}(34) + S_{22}(27) + S_{24}(24)$
δ ring 2	613	9	$S_{22}(50) + S_{24}(27)$
τ(C-N)	549	21	$S_{31}(72)$
δ(C-C-N)	491	2	$S_{25}(41)+S_{21}(14)$
τ ring 3	412	1	S ₃₀ (89)
τ ring 2	380	7	$S_{29}(75)+S_{38}(12)$
δring 3	372	4	$S_7(31)+S_{24}(17)+S_{23}(17)+S_{25}(11)$
$\gamma(\rm NH_2)$	316	176	S ₃₃ (88)
w(C-C)	210	15	$S_{21}(65)+S_{25}(18)$
γ(C-C)	149	3	$S_{38}(52) + S_{29}(29)$
τ(C-C)	54	14	$S_{32}(97)$

TABLE S3. DFT(B3LYP)/6-311++G(d,p) calculated wavenumbers and intensities, and normal coordinate analysis for nicotinamide (conformer E)^a

^a Wavenumbers in cm⁻¹; intensities in km mol⁻¹. v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion; s, symmetric; as, anti-symmetric. See Table S2 for definition of coordinates. ^b Scaled by 0.960 in the high wavenumbers region and by 0.988 in the low wavenumbers region (below 1800 cm⁻¹). ^c Only PED values greater than 10 % are given.

Approximate Description	Calculated Wavenumbers ^b	Intensity	PED ^c
v(NH ₂)as	3559	38	S ₁₅ (99)
$v(NH_2)s$	3440	44	S ₁₄ (99)
v(C-H)''1	3065	11	$S_{10}(80)+S_{11}(14)$
v(C-H)'1	3054	2	$S_8(53)+S_9(45)$
v(C-H)"2	3044	8	$S_{11}(80) + S_{10}(17)$
v(C-H)'2	3028	12	$S_9(51)+S_8(41)$
v(C=O)	1730	362	$S_{12}(78)$
v ring 1	1608	63	$S_1(41)+S_5(15)+S_20(12)$
$\delta(NH_2)$	1601	102	S ₂₆ (87)
v ring 5	1587	19	$S_3(36)+S_5(30)+S_{18}(12)$
δ (C-H)"1	1485	4	$S_{18}(28)+S_{19}(26)+S_6(20)$
v ring 4	1434	13	$S_{17}(23)+S_4(18)+S_2(15)+S_{18}(10)$
δ(C-H)'1	1344	99	$S_{17}(51)+S_{13}(11)$
v(C-N)	1334	137	$S_{19}(26)+S_{13}(20)+S_7(13)$
v ring 6	1270	1	$S_2(30)+S_6(29)+S_4(24)$
δ(C-H)'2	1210	12	$S_{18}(35)+S_6(19)+S_{20}(18)$
δ(С-Н)"2	1140	6	$S_{20}(20)+S_2(12)+S_{16}(12)+S_1(10)$
v ring 2	1126	12	$S_{20}(27)+S_2(22)+S_{27}(11)+S_4(10)+S_5(10)$
$w(NH_2)$	1071	10	$S_{27}(49) + S_{13}(28)$
v ring 3	1046	1	$S_3(25)+S_1(20)+S_5(14)+S_4(13)$
δ ring 1	1026	18	$S_{16}(66) + S_6(13)$
ү(С-Н)''2	993	1	$S_{37}(67) + S_{35}(43)$
ү(С-Н)'2	967	1	$S_{35}(68) + S_{37}(32)$
γ(C-H)''1	947	1	$S_{36}(84) + S_{34}(22)$
γ(C-H)'1	823	8	$S_{34}(42)+S_{39}(19)+S_{38}(13)+S_{28}(11)$
v(C-C)	770	6	$S_{23}(33)+S_7(20)+S_5(12)$
γ(C=O)	742	46	$S_{39}(47) + S_{34}(24) + S_{31}(12)$
τ ring 1	710	16	$S_{28}(100)$
δ(C=O)	635	12	$S_{23}(34)+S_{22}(33)+S_{24}(12)$
δ ring 2	614	13	$S_{22}(44)+S_{24}(38)$
τ (C-N)	549	28	$S_{31}(66) + S_{33}(12)$
δ(C-C-N)	502	1	$S_{25}(37)+S_{21}(15)$
τ ring 3	411	4	$S_{30}(93)$
τ ring 2	381	53	$S_{29}(44)+S_{33}(23)$
δring 3	367	61	$S_{24}(32)+S_{23}(23)+S_{25}(17)$
$\gamma(\rm NH_2)$	363	73	$S_{33}(43) + S_7(18)$
w(C-C)	206	5	$S_{21}(66) + S_{25}(17)$
y(C-C)	149	3	$S_{38}(52) + S_{29}(25)$
τ(C-C)	60	4	S ₃₂ (97)

TABLE S4. DFT(B3LYP)/6-311++G(d,p) calculated wavenumbers and intensities, and normal coordinate analysis for nicotinamide (conformer Z)^a

^a Wavenumbers in cm⁻¹; intensities in km mol⁻¹. v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion; s, symmetric; as, anti-symmetric. See Table S2 for definition of coordinates. ^b Scaled by 0.960 in the high wavenumbers region and by 0.988 in the low wavenumbers region (below 1800 cm⁻¹). ^c Only PED values greater than 10 % are given.

	Definition ^a	Sym- metry	Approximate description
S_1	$v(N_{1A}-C_{2A})+v(N_{1B}-C_{2B})$	A_{g}	v ring 1
S_2	$v(N_{1A}-C_{2A})-v(N_{1B}-C_{2B})$	A_u	v ring 1
S_3	$v(C_{2A}-C_{3A})+v(C_{2B}-C_{3B})$	A_{g}	v ring 2
S_4	$v(C_{2A}-C_{3A})-v(C_{2B}-C_{3B})$	A_u°	v ring 2
S_5	$v(C_{3A}-C_{4A})+v(C_{3B}-C_{4B})$	Ag	v ring 3
S_6	$v(C_{3A}-C_{4A})-v(C_{3B}-C_{4B})$	A_u°	v ring 3
S_7	$v(C_{4A}-C_{5A})+v(C_{4B}-C_{5B})$	Ag	v ring 4
S_8	$V(C_{4A}-C_{5A})-V(C_{4B}-C_{5B})$	Au	v ring 4
S_9	$v(C_{5A}-C_{6A})+v(C_{5B}-C_{6B})$	A _g	v ring 5
S ₁₀	$V(C_{5A}-C_{6A})-V(C_{5B}-C_{6B})$	A	v ring 5
S ₁₁	$v(C_{6A} - N_{1A}) + v(C_{6A} - N_{1A})$	Å,	v ring 6
S12	$V(C_{4A} - N_{1A}) - V(C_{4A} - N_{1A})$	A.	v ring 6
S_{12}	$v(C_{0A} - H_{TA}) + v(C_{0A} - H_{TA})$	Aa	v(C-H)
~13 S14	$V(C_{2A} - H_{7A}) - V(C_{2B} - H_{7B})$	A.	v(C-H)
S15	$V(C_{2A} \Pi A) + V(C_{2B} \Pi B)$	A.	v(C-C)
S ₁₅	$v(C_{34} - C_{114}) + v(C_{38} - C_{118})$	A	v(C-C)
S10	$v(C_{3A} \cup H_{A}) + v(C_{3B} \cup H_{B})$	Δ	v(C-H)
S10	$v(C_{4A}-11_{8A}) + v(C_{4B}-11_{8B})$ $v(C_{4A}-11_{8A}) + v(C_{4B}-11_{8B})$	A	$v(C-H)^2$
S	$v(C_{4A}-11_{8A})-v(C_{4B}-11_{8B})$ $v(C_{4A}-11_{8A})-v(C_{4B}-11_{8B})$	Δ	$v(C-H)^2$
S	$v(C_{5A}-11_{9A}) + v(C_{5B}-11_{9B})$	Δ	$v(C-H)_{3}$
520 Sa	$v(C_{5A}-11_{9A})-v(C_{5B}-11_{9B})$	Δ	v(C-H)/2
S 21	$v(C_{6A}-I_{10A})+v(C_{6B}-I_{10B})$	Ag A	V(C-11)4
S ₂₂	$v(C_{6A}-I1_{10A})-v(C_{6B}-I1_{10B})$	Au A	V(C-11)4
S ₂₃	$v(C_{11A} - O_{15A}) + v(C_{11B} - O_{15B})$	Ag A	V(C=0)
S ₂₄	$v(C_{11A} - O_{15A}) - v(C_{11B} - O_{15B})$	Au A	V(C-O)
S ₂₅	$v(C_{11A}-N_{12A})+v(C_{11B}-N_{12B})$	Ag A	V(C-N)
S ₂₆	$v(C_{11A}-N_{12A})-v(C_{11B}-N_{12B})$	A _u	V(C-N)
S ₂₇	$V(N_{12A}-n_{13A}) + V(N_{12B}-n_{13B})$	Ag A	V(N-H)
S ₂₈	$V(N_{12A}-H_{13A})-V(N_{12B}-H_{13B})$	A _u	V(N-H)
S ₂₉	$V(N_{12A}-H_{14A})+V(N_{12B}-H_{14B})$	Ag A	V(N-H)2
S ₃₀	$V(N_{12A}-H_{14A})-V(N_{12B}-H_{14B})$	Au	V(N-H)2
S ₃₁	$\delta(C_{2A}-N_{1A}-C_{6A})-\delta(N_{1A}-C_{6A}-C_{5A})+\delta(C_{6A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{4A}-C_{3A})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{5A}-C_{4A}-C_{5B})+\delta(C_{6B}-C_{5B}-C_{4B})-\delta(C_{5B}-C_{4B}-C_{3B})+\delta(C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B})+\delta(C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B})+\delta(C_{5B}-C$	Ag	o ring 1
S ₃₂	$\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{3B}-C_{2B}-1A_{1B}) \\ \delta(C_{2A}-N_{1A}-C_{6A})-\delta(N_{1A}-C_{6A}-C_{5A})+\delta(C_{6A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{4A}-C_{3A})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{1A})-\delta(C_{2B}-N_{1B}-C_{6B})+\delta(N_{1B}-C_{6B}-C_{5B})-\delta(C_{6B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{3B})-\delta(C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{$	A_u	δ ring 1
	$\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{3B}-C_{2B}-N_{1B})$		
S_{33}	$\delta(H_{7A}-C_{2A}-N_{1A})-\delta(H_{7A}-C_{2A}-C_{3A})+\delta(H_{7B}-C_{2B}-N_{1B})-\delta(H_{7B}-C_{2B}-C_{3B})$	Ag	δ(C-H)1
S_{34}	$\delta(H_{7A}-C_{2A}-N_{1A})-\delta(H_{7A}-C_{2A}-C_{3A})-\delta(H_{7B}-C_{2B}-N_{1B})+\delta(H_{7B}-C_{2B}-C_{3B})$	A_u	δ(C-H)1
S_{35}	$\delta(H_{8A}-C_{4A}-C_{3A})-\delta(H_{8A}-C_{4A}-C_{5A})+\delta(H_{8B}-C_{4B}-C_{3B})-\delta(H_{8B}-C_{4B}-C_{5B})$	Ag	δ(C-H)2
S_{36}	$\delta(H_{8A}-C_{4A}-C_{3A})-\delta(H_{8A}-C_{4A}-C_{5A})-\delta(H_{8B}-C_{4B}-C_{3B})+\delta(H_{8B}-C_{4B}-C_{5B})$	A_u	δ(C-H)2
S_{37}	$\delta(H_{9A}-C_{5A}-C_{4A})-\delta(H_{9A}-C_{5A}-C_{6A})+\delta(H_{9B}-C_{5B}-C_{4B})-\delta(H_{9B}-C_{5B}-C_{6B})$	Ag	δ(C-H)3
S ₃₈	$\delta(H_{9A}-C_{5A}-C_{4A})-\delta(H_{9A}-C_{5A}-C_{6A})-\delta(H_{9B}-C_{5B}-C_{4B})+\delta(H_{9B}-C_{5B}-C_{6B})$	A_u	δ(C-H)3
S ₃₉	$\delta(H_{10A}-C_{6A}-C_{5A})-\delta(H_{10A}-C_{6A}-N_{1A})+\delta(H_{10B}-C_{6B}-C_{5B})-\delta(H_{10B}-C_{6B}-N_{1B})$	A_{g}	δ(C-H)4
S_{40}	$\delta(H_{10A}-C_{6A}-C_{5A})-\delta(H_{10A}-C_{6A}-N_{1A})+\delta(H_{10B}-C_{6B}-C_{5B})+\delta(H_{10B}-C_{6B}-N_{1B})$	A_u	δ(C-H)4
S_{41}	$\delta(C_{11A}-C_{3A}-C_{2A})-\delta(C_{11A}-C_{3A}-C_{4A})+\delta(C_{11B}-C_{3B}-C_{2B})-\delta(C_{11B}-C_{3B}-C_{4B})$	Ag	w(C-C)
S_{42}	$\delta(C_{11A}-C_{3A}-C_{2A})-\delta(C_{11A}-C_{3A}-C_{4A})-\delta(C_{11B}-C_{3B}-C_{2B})+\delta(C_{11B}-C_{3B}-C_{4B})$	Ău	w(C-C)
S ₄₃	$2\delta(C_{2A}-N_{1A}-C_{6A})-\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+2\delta(C_{5A}-C_{4A}-C_{3A})-\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{A})+2\delta(C_{2B}-N_{1B}-C_{6B})-\delta(N_{1B}-C_{6B}-C_{5B})-\delta(C_{6B}-C_{5B}-C_{4B})+2\delta(C_{5B}-C_{4B}-C_{3B})-\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{4B})+2\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{4B})+2\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{4B})+2\delta(C_{5B}-C_{4B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{4B})+2\delta(C_{5B}-C_{5B}-C_{4B})-\delta(C_{5B}-C_{5B}-C_{4B})+2\delta(C_{5B}-C_{5B}-C_{4B})-\delta(C_{5B}-C_{5B}-C_{4B})-\delta(C_{5B}-C_{5B}-C_{5B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{5B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B})-\delta(C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B})-\delta(C_{5B}-$	A_g	δ ring 2
S_{44}	$ \begin{split} &\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{3B}-C_{2B}-N_{1B}) \\ &2\delta(C_{2A}-N_{1A}-C_{6A})-\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+2\delta(C_{5A}-C_{4A}-C_{3A})-\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{4A}-C_{4A}-C_{4A}-C_{4A}-C_{4A}-C_{4A})-\delta(C_{4A}-C_{4$	A_u	δ ring 2

TABLE S5. Definition of symmetry coordinates used in the normal coordinate analysis for *Dimer 1* of nicotinamide.

	$\delta(C_{3A}-C_{2A}-N_{A})-\delta(C_{2B}-N_{1B}-C_{6B})+\delta(N_{1B}-C_{6B}-C_{5B})+\delta(C_{6B}-C_{5B}-C_{4B})-2\delta(C_{5B}-C_{4B}-C_{3B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C$		
\mathbf{S}_{45}	$\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{1A})+\delta(N_{1B}-C_{6B}-C_{5B})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5$	$\mathbf{A}_{\mathbf{g}}$	δ ring 3
\mathbf{S}_{46}	$\delta(C_{6B}-C_{5B}-C_{4B})-\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{3B}-C_{2B}-V_{1B})$ $\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{1A})-\delta(N_{1B}-C_{6B}-C_{5B})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{1A})-\delta(N_{1B}-C_{6B}-C_{5B})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{1A})-\delta(N_{1B}-C_{6B}-C_{5B})+\delta(C_{4A}-C_{$	A_u	δ ring 3
S ₄₇	$\frac{\partial(C_{6B}-C_{5B}-C_{4B})-\partial(C_{4B}-C_{3B}-C_{2B})+\partial(C_{3B}-C_{2B}-N_{1B})}{2\delta(N_{12A}-C_{11A}-C_{3A})-\delta(O_{15A}=C_{11A}-N_{12A})-\delta(O_{15A}=C_{11A}-C_{3A})+2\delta(N_{12B}-C_{11B}-C_{3B})-\delta(O_{15A}=C_{11A}-C_{3A})+2\delta(N_{12B}-C_{11B}-C_{3B})-\delta(O_{15A}=C_{11A}-C_{3A})+2\delta(N_{12B}-C_{11B}-C_{3B})-\delta(O_{15A}=C_{11A}-C_{3A})+2\delta(N_{12B}-C_{11B}-C_{3B})-\delta(O_{15A}=C_{11A}-C_{3A})+2\delta(N_{12B}-C_{11B}-C_{3B})-\delta(O_{15A}=C_{11A}-C_{11A}-C_{3A})+\delta(O_{15A}=C_{11A}-C_{11A}-C_{3A})+\delta(O_{15A}=C_{11A}-C_{11A}-C_{3A})+\delta(O_{15A}=C_{11A}-C_{11A$	Ag	δ(C-C-N)
	$\delta(O_{15B}=C_{11B}-N_{12B})-\delta(O_{15B}=C_{11B}-C_{3B})$	0	· · · · ·
S ₄₈	$\begin{aligned} &2\delta(N_{12A}-C_{11A}-C_{3A})-\delta(O_{15A}=C_{11A}-N_{12A})-\delta(O_{15A}=C_{11A}-C_{3A})-2\delta(N_{12B}-C_{11B}-C_{3B})+\\ &\delta(O_{15B}=C_{11B}-N_{12B})+\delta(O_{15B}=C_{11B}-C_{3B})\end{aligned}$	A _u	δ(C-C-N)
S_{49}	$\delta(O_{15A}=C_{11A}-N_{12A})-\delta(O_{15A}=C_{11A}-C_{3A})+\delta(O_{15B}=C_{11B}-N_{12B})-\delta(O_{15B}=C_{11B}-C_{3B})$	A_g	δ(C=O)
S ₅₀	$\delta(O_{15A}=C_{11A}-N_{12A})-\delta(O_{15A}=C_{11A}-C_{3A})-\delta(O_{15B}=C_{11B}-N_{12B})+\delta(O_{15B}=C_{11B}-C_{3B})$	A _u	δ(C=O)
S ₅₁	$\frac{2\delta(H_{13A}-N_{12A}-H_{14A})-\delta(H_{13A}-N_{12A}-C_{11A})-\delta(H_{14A}-N_{12A}-C_{11A})+2\delta(H_{13B}-N_{12B}-H_{14B})-\delta(H_{13B}-N_{12B}-C_{11B})-\delta(H_{14B}-A_{14}$	A _g	δ(NH ₂)
S ₅₂	$\frac{2\delta(H_{13A}-N_{12A}-H_{14A})-\delta(H_{13A}-N_{12A}-C_{11A})-\delta(H_{14A}-N_{12A}-C_{11A})-2\delta(H_{13B}-N_{12B}-H_{14B})+}{\delta(H_{13B}-N_{12B}-C_{11B})+\delta(H_{14B}-N_{12B}-C_{11B})}$	A _u	$\delta(NH_2)$
S_{53}	$\delta(H_{13A}-N_{12A}-C_{11A})-\delta(H_{14A}-N_{12A}-C_{11A})+\delta(H_{13B}-N_{12B}-C_{11B})-\delta(H_{14B}-N_{12B}-C_{11B})$	Ag	$w(NH_2)$
S_{54}	$\delta(H_{13A}-N_{12A}-C_{11A})-\delta(H_{14A}-N_{12A}-C_{11A})-\delta(H_{13B}-N_{12B}-C_{11B})+\delta(H_{14B}-N_{12B}-C_{11B})$	A_u	$w(NH_2)$
S ₅₅	$\tau(N_{1A}-C_{2A}-C_{3A}-C_{4A})-\tau(C_{2A}-C_{3A}-C_{4A}-C_{5A})+\tau(C_{3A}-C_{4A}-C_{5A}-C_{6A})-\tau(C_{4A}-C_{5A}-C_{6A}-N_{1A})+\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})+\tau(N_{1B}-C_{2B}-C_{3B}-C_{4B})-\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})+\tau(C_{2B}-C_{2B}-C_{4B}-C_{5A}-C_{4A}-C_{5A}-C_{5A}-C_{4A}-C_{5A}-C_$	A _u	τ ring 1
	$\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})-\tau(C_{4B}-C_{5B}-C_{6B}-N_{1B})+\tau(C_{5B}-C_{6B}-N_{1B}-C_{2B})-\tau(C_{6B}-N_{1B}-C_{2B}-C_{3B})$		
S ₅₆	$\tau(N_{1A}-C_{2A}-C_{3A}-C_{4A})-\tau(C_{2A}-C_{3A}-C_{4A}-C_{5A})+\tau(C_{3A}-C_{4A}-C_{5A}-C_{6A})-\tau(C_{4A}-C_{5A}-C_{6A}-N_{1A})+$	A_g	τ ring 1
	$\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(N_{1B}-C_{2B}-C_{3B}-C_{4B})+\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})-\tau(C_{5A}-$		
C	$\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})+\tau(C_{4B}-C_{5B}-C_{6B}-N_{1B})-\tau(C_{5B}-C_{6B}-N_{1B}-C_{2B})+\tau(C_{6B}-N_{1B}-C_{2B}-C_{3B})$		·
S_{57}	$2\tau(N_{1A}-C_{2A}-C_{3A}-C_{4A})-\tau(C_{2A}-C_{3A}-C_{4A}-C_{5A})-\tau(C_{3A}-C_{4A}-C_{5A}-C_{6A})+2\tau(C_{4A}-C_{5A}-C_{6A})+$	A _u	τ ring 2
	$\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})+2\tau(N_{1B}-C_{2B}-C_{3B}-C_{4B})-\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})-\tau(C_{2B}-C_{4B}-C_{5B}-C_{4B}-C_{5B})-\tau(C_{2B}-C_{4B}-C_{5B}-C_{4B}-C_{5B})-\tau(C_{2B}-C_{4B}-C_{5B}-C_{4B}-C_{5B})-\tau(C_{2B}-C_{4B}-C_{5B}-C_{4B}-C_{5B})-\tau(C_{2B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B})-\tau(C_{2B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B}-C_{5B})-\tau(C_{2B}-C_{5B}-C_$		
See	$2\tau(N_{4B}-C_{5B}-C_{6B})+2\tau(C_{4B}-C_{5B}-C_{6B}-1_{1B})+\tau(C_{5B}-C_{6B}-1_{1B}-C_{2B})+2\tau(C_{4B}-1_{1B}-C_{2B}-C_{4B})$	А	τ ring 2
058	$\frac{1}{2} \left(\left(\sum_{A} - \sum_{A} $	1 L g	t Hing 2
	$t(C_{2D}-C_{4D}-C_{5D}-C_{4D})-2t(C_{4D}-C_{5D}-C_{4D}-C_{4D})+t(C_{5D}-C_{4D}-C_{4D})+t(C_{5D}-C_{4D}-C_{5D})+t(C_{5D}-C_{4D}-C_{5D})+t(C_{5D}-C_{5D}-C_{5D}-C_{5D})$		
S ₅₉	$\tau(C_{3A}-C_{3A}-C_{5A})-\tau(C_{3A}-C_{5A}-C_{5A})+\tau(C_{5A}-C_{6A})+\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})+\tau(C_{5A}-C_{6$	A_u	τ ring 3
	$\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})-\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})+\tau(C_{5B}-C_{6B}-N_{1B}-C_{2B})-\tau(C_{6B}-N_{1B}-C_{2B}-C_{3B})$		U
S ₆₀	$\tau(C_{2A}-C_{3A}-C_{4A}-C_{5A})-\tau(C_{3A}-C_{4A}-C_{5A}-C_{6A})+\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{2A}-C_{3A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{2A}-C_{2A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{2A}-C_{2A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C$	A_g	τ ring 3
	$\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})+\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})-\tau(C_{5B}-C_{6B}-N_{1B}-C_{2B})+\tau(C_{6B}-N_{1B}-C_{2B}-C_{3B})$		
S ₆₁	$\tau(O_{15A}=C_{11A}-N_{12A}-H_{13A})+\tau(O_{15B}=C_{11B}-N_{12B}-H_{13B})$	A_u	τ(C-N)
S ₆₂	$\tau(O_{15A}=C_{11A}-N_{12A}-H_{13A})-\tau(O_{15B}=C_{11B}-N_{12B}-H_{13B})$	A_g	τ(C-N)
S ₆₃	$\tau(O_{15A} = C_{11A} - C_{3A} - C_{2A}) + \tau(O_{15B} = C_{11B} - C_{3B} - C_{2B})$	Au	τ(C-C)1
S ₆₄	$\tau(O_{15A} = C_{11A} - C_{3A} - C_{2A}) - \tau(O_{15B} = C_{11B} - C_{3B} - C_{2B})$	Ag	$\tau(C-C)$
S ₆₅	$\tau(C_{11A}-C_{3A}-C_{2A}-N_{1A})+\tau(C_{11B}-C_{3B}-C_{2B}-N_{1B})$	A _u	τ (C-C)2
5 ₆₆ S	$\tau(U_{11A}-C_{3A}-C_{2A}-N_{1A})-\tau(U_{11B}-C_{3B}-C_{2B}-N_{1B})$	A _g	$\tau(C-C)^2$
S ₆₇	$\gamma(H_{9A}-(C_{5A}-C_{4A})-C_{6A})+\gamma(H_{9A}-(C_{5A}-C_{4A})-C_{6A})$	A _u	$\gamma(C-H)$
S ₆₈	$\gamma(\Pi_{9A} - (C_{5A} - C_{4A}) - C_{6A}) - \gamma(\Pi_{9A} - (C_{5A} - C_{4A}) - C_{6A})$	Ag A	$\gamma(C-\Pi)$
S ₆₉	$\gamma(\Pi_{7A}^{-}(C_{2A}^{-}\Pi_{1A})-C_{3A})+\gamma(\Pi_{7B}^{-}(C_{2B}^{-}\Pi_{1B})-C_{3B})$ $\gamma(H_{2A}^{-}(C_{2A}^{-}\Pi_{1A})-C_{2A}^{-})-\gamma(H_{2A}^{-}(C_{2B}^{-}\Pi_{1B})-C_{2B}^{-})$	A A	$\gamma(C-H)^2$
S ₇₁	$(\Pi_{A}^{-}(C_{2A}^{-}N_{1A}^{-})-C_{3A}^{-}) - (\Pi_{B}^{-}(C_{2B}^{-}N_{1B}^{-})-C_{3B}^{-})$ $(\Pi_{A}^{-}(C_{2A}^{-}-C_{2A}^{-})-N_{1A}^{-}) + (\Pi_{A}^{-}-C_{2B}^{-}-N_{1B}^{-})-C_{3B}^{-})$	A.	$\gamma(C-H)^2$
S_{72}	$\gamma(H_{10A} - (C_{eA} - C_{eA}) - N_{1A}) - \gamma(H_{10B} - (C_{eB} - C_{eB}) - N_{1B})$	A _a	γ(C-H)3
S ₇₃	$\gamma(H_{84}-(C_{44}-C_{54})-C_{64})+\gamma(H_{88}-(C_{48}-C_{58})-C_{68})$	Au	γ(C-H)4
S ₇₄	$\gamma(H_{8A}-(C_{4A}-C_{5A})-C_{6A})-\gamma(H_{8B}-(C_{4B}-C_{5B})-C_{6B})$	Ag	γ(C-H)4
\mathbf{S}_{75}	$\gamma(O_{15A} = (C_{11A} - N_{12A}) - C_{3A}) + \gamma(O_{15B} = (C_{11B} - N_{12B}) - C_{3B})$	A_u	γ(C=O)
\mathbf{S}_{76}	$\gamma(O_{15A}=(C_{11A}-N_{12A})-C_{3A})-\gamma(O_{15B}=(C_{11B}-N_{12B})-C_{3B})$	A_g	γ(C=O)
\mathbf{S}_{77}	$\gamma(C_{11A}-(N_{12A}-H_{14A})-H_{13A})+\gamma(C_{11B}-(N_{12B}-H_{14B})-H_{13B})$	A_u	$\gamma(NH_2)$
S ₇₈	$\gamma(C_{11A}-(N_{12A}-H_{14A})-H_{13A})-\gamma(C_{11B}-(N_{12B}-H_{14B})-H_{13B})$	Ag	$\gamma(NH_2)$
S ₇₉	$v(O_{15A}H_{14B})+v(O_{15B}H_{14A})$	Ag	$\nu_{A\ldots B}$
S ₈₀	$V(O_{15A}H_{14B})-V(O_{15B}H_{14A})$	A _u	ν _{ΑB}
S_{81}	$O(U_{11A}IN_{12B}U_{11B}) - O(U_{11A}U_{15B}U_{11B})$	Ag	o _{AB}

S_{82}	$\tau(C_{11B}N_{12A}C_{11A}O_{15A})+\tau(C_{11A}N_{12B}C_{11B}O_{15B})$	Au	$\tau_{A\ldots B}$
S_{83}	$\tau(C_{11B}N_{12A}C_{11A}O_{15A})-\tau(C_{11A}N_{12B}C_{11B}O_{15B})$	Ag	$\tau_{A\ldots B}$
S_{84}	$\gamma(N_{12A}C_{11A}C_{11B}N_{12B}) + \gamma(N_{12A}C_{11A}C_{11B}O_{15B}) + \gamma(O_{15A}C_{11A}C_{11B}N_{12B}) +$	A_u	γ _{АВ}
	$\gamma(O_{15A}C_{11A}C_{11B}O_{15B})$		

^a See Scheme 1 for atom numbering. v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion. Normalizing factors (*N*) are not provided; they can be calculated as $N_j = \sqrt{\sum_i \frac{1}{c_i^2}}$, where *j* refer to the vibrational coordinate and c_i are the coefficients associated with each coordinate in which the vibrational coordinate avande.

with each coordinate in which the vibrational coordinate expands.

Approximate Description	Symmetry	Calculated Wavenumber ^b	Intensity	PED ^c
v(N-H)1	Au	3535	178	$S_{28}(97)$
v(N-H)1	Ag	3534	0	$S_{27}(97)$
v(N-H)2	Au	3204	2566	$S_{30}(97)$
ν (N-H)2	A _a	3165	0	$S_{20}(99)$
$v(C-H)^2$	A	3075	Ő	$S_{17}(81) + S_{10}(18)$
$v(C-H)^2$	A _u	3075	12	$S_{18}(81) + S_{20}(18)$
v(C-H)3	A _a	3059	0	$S_{10}(75)+S_{17}(19)$
v(C-H)3	A _u	3059	20	$S_{19}(75) + S_{19}(19)$
v(C-H)4	A -	3029	0	$S_{20}(91)$
v(C-H)4	A.	3029	21	$S_{21}(91)$
v(C-H)	A.	3017	43	$S_{22}(91)$
v(C-H)	A -	3017	0	$S_{12}(98)$
v(C=0)	A.	1707	788	$S_{13}(56) + S_{52}(16) + S_{22}(13)$
$\delta(NH_{a})$	A	1696	,00	$S_{24}(50) + S_{52}(10) + S_{26}(15)$ $S_{51}(51) + S_{52}(28)$
$\delta(NH_2)$	A	1630	135	$S_{51}(77) + S_{23}(20)$ $S_{c2}(77) + S_{24}(17)$
v(C=0)	Δ	1612	0	$S_{22}(77) + S_{24}(17)$ $S_{23}(30) + S_{23}(27) + S_{24}(12)$
δ(C H)3	Δ	1600	104	$S_{51}(50) + S_{23}(27) + S_{5}(12)$ $S_{5}(29) + S_{5}(15) + S_{5}(10) + S_{5}(10)$
δ(C H)3	Δ	1609	104	$S_{8}(22) + S_{2}(12) + S_{6}(10) + S_{36}(10)$ $S_{-}(22) + S_{-}(11) + S_{-}(10) + S_{-}(10)$
0(C-11)3	Ag A	1585	18	$S_{7}(22) + S_{1}(11) + S_{3}(11) + S_{33}(10) + S_{51}(10)$ $S_{1}(21) + S_{1}(12) + S_{1}(14) + S_{1}(12) + S_{1}(11)$
v ring 3	A _u	1582	18	$S_{10}(21) + S_6(10) + S_{12}(14) + S_4(15) + S_{40}(11)$ $S_{10}(21) + S_{10}(14) + S_{10}(11) + S_{10}(10) + S_{10}(10)$
$\sqrt{100}$	Ag A	1362	0	$S_{9}(10) + S_{23}(10) + S_{5}(14) + S_{11}(11) + S_{3}(10) + S_{39}(10)$ $S_{10}(11) + S_{10}(11) + S_{10}(10) + S_{10}(10)$
0(С-H)4 S(С II)4	Ag A	1493	0	$S_{37}(24)+S_{33}(21)+S_{11}(11)+S_7(10)$ S (24)+S (22)+S (11)
$0(C-\Pi)^4$	A _u	1492	4	$S_{38}(24) + S_{34}(22) + S_{12}(11)$ $S_{-}(27) + S_{-}(15) + S_{-}(12)$
v ring 2	Ag A	1431	0	$S_{39}(57) + S_1(15) + S_3(15)$ S (20) + S (16) + S (12)
v ring 2	A _u	1431	09	$S_{40}(39) + S_2(10) + S_4(13)$ $S_{-}(42) + S_{-}(15) + S_{-}(14) + S_{-}(11)$
V(C-N)	Ag A	1404	566	$S_{25}(43) + S_{15}(13) + S_{53}(14) + S_{49}(11)$ $S_{-}(41) + S_{-}(17) + S_{-}(14) + S_{-}(11)$
V(C-N)	A _u	1393	300	$S_{26}(41)+S_{16}(17)+S_{54}(14)+S_{50}(11)$
0(C-H)1	A _u	1344	5	$S_{34}(44) + S_{36}(25) + S_{38}(10) + S_{40}(10)$ $S_{-}(44) + S_{-}(25) + S_{-}(10) + S_{-}(10)$
0(C-H)1	Ag A	1344	0	$S_{33}(44) + S_{35}(23) + S_{37}(10) + S_{39}(10)$ $S_{33}(20) + S_{37}(10) + S_{37}(10)$
V ring 1	Ag A	12/3	0	$S_1(30) + S_{11}(19) + S_3(17) + S_5(10)$ $S_1(20) + S_2(18) + S_2(17) + S_2(10)$
v ring 1	Au	12/3	11	$S_2(30)+S_{12}(18)+S_4(17)+S_6(10)$
V ring 6	Ag	1215	0	$S_{39}(25)+S_{11}(19)+S_{1}(10)+S_{9}(10)+S_{33}(10)$
V ring 6	A _u	1214	52	$S_{40}(23) + S_{12}(20) + S_2(10) + S_{10}(10)$ $S_{-}(21) + S_{-}(14) + S_{-}(14) + S_{-}(12) + S_{-}(12)$
V ring 4	Ag	1157	0	$S_{37}(21)+S_7(14)+S_{15}(14)+S_{53}(15)+S_{31}(12)$
V ring 4	Au	1154	12	$S_{38}(21)+S_8(14)+S_{16}(13)+S_{54}(12)+S_{32}(12)$
б(С-H)2	Ag	1121	0	$S_{35}(31)+S_1(10)+S_7(10)$
ð(С-H)2	Au	1120	19	$S_{36}(33)+S_2(11)+S_8(10)$
$W(NH_2)$	Ag	1106	0	$S_{53}(43) + S_{25}(16)$
$W(NH_2)$	A_u	1102	8	$S_{54}(50)+S_{26}(10)+S_{24}(11)$
v ring 5	Ag	1045	0	$S_{9}(42)+S_{11}(18)+S_{7}(13)$
v ring 5	Au	104/	1	$S_{10}(41)+S_{12}(18)+S_8(14)$
ð ring l	Ag	1027	0	$S_{31}(68)+S_5(10)+S_3(10)$
δ ring l	Au	1026	27	$S_{32}(68) + S_6(10) + S_4(10)$
γ (C-H)1	Ag	1001	0	$S_{68}(46) + S_{74}(32) + S_{72}(17)$
γ(C-H)1	Au	1001	3	$S_{67}(40)+S_{73}(32)+S_{71}(17)$
γ(C-H)3	Au	976	2	$S_{71}(59)+S_{73}(29)+S_{69}(14)$
γ(C-H)3	Ag	976	0	$S_{72}(60) + S_{74}(29) + S_{70}(14)$
γ(C-H)2	Ag	934	0	$S_{70}(84)+S_{72}(10)$
γ(C-H)2	Au	934	2	$S_{69}(84) + S_{71}(10)$
$\gamma(NH_2)$	A_{μ}	843	88	$S_{78}(72) + S_{61}(32)$

TABLE S6. DFT(B3LYP)/6-311++G(d,p) calculated wavenumbers and intensities, and normal coordinate analysis for *Dimer 1* of nicotinamide ^a

ү(С-Н)4	A_{g}	833	0	$S_{68}(35)+S_{56}(23)+S_{76}(17)+S_{74}(14)$
γ(C-H)4	A_u	832	58	$S_{67}(34)+S_{55}(23)+S_{71}(14)+S_{73}(13)$
$\gamma(NH_2)$	A_{g}	796	0	$S_{77}(80) + S_{62}(29)$
v(C-C)	A_u	786	18	$S_{46}(25)+S_{16}(19)+S_6(12)$
v(C-C)	Ag	782	0	$S_{45}(28)+S_{15}(20)+S_{5}(12)$
γ (C=O)	Ag	736	0	$S_{76}(51)+S_{68}(13)+S_{74}(11)$
γ (C=O)	A_u^{s}	731	33	$S_{75}(50)+S_{65}(14)+S_{73}(12)$
τ ring 1	Ag	709	0	S ₅₆ (84)
τ ring 1	A_u	708	46	S ₅₅ (83)
δ(C=O)	A_u	658	42	$S_{50}(43) + S_{46}(41)$
δ(C=O)	Ag	649	0	$S_{49}(40) + S_{45}(40)$
δ ring 2	A_u^{s}	622	7	S ₄₄ (77)
δ ring 2	Ag	620	0	$S_{43}(71) + S_{49}(11)$
δ(C-C-N)	A_u^{s}	521	46	$S_{48}(44) + S_{42}(10)$
δ(C-C-N)	Ag	507	0	$S_{47}(41)+S_{58}(12)+S_{41}(10)$
τ (C-N)	Ag	443	0	$S_{62}(42)+S_{77}(15)+S_{58}(11)$
τ (C-N)	Au	437	135	$S_{61}(41)+S_{78}(18)+S_{57}(17)+S_{59}(10)$
τ ring 3	Au	415	73	$S_{59}(68) + S_{61}(17)$
τ ring 3	Ag	412	0	$S_{60}(74)$
δ ring 3	Ag	402	0	$S_{15}(22)+S_{45}(15)+S_{47}(13)+S_{79}(12)$
τ ring 2	Au	385	18	$S_{57}(50) + S_{16}(12)$
τ ring 2	Ασ	374	0	$S_{58}(69) + S_{62}(12)$
δ ring 3	A	372	25	$S_{57}(26)+S_{16}(22)+S_{46}(13)+S_{50}(13)+S_{61}(11)$
w(C-C)	Au	250	92	$S_{42}(58)+S_{80}(25)$
w(C-C)	Ag	234	0	$S_{41}(56) + S_{81}(19) + S_{47}(12)$
τ(C-C)2	Ag	170	0	$S_{66}(65) + S_{83}(16)$
τ(C-C)2	Au	163	8	S ₆₅ (74)
ν _{Α Β}	Ag	98	0	S ₇₉ (81)
δ _{Α Β}	Ag	87	0	$S_{81}(68)$
γ _{A B}	A	79	15	$S_{84}(60) + S_{63}(42)$
τ (C-C)1	Åσ	54	0	$S_{64}(59) + S_{83}(31)$
νΔΒ	A	51	1	$S_{80}(57) + S_{48}(20) + S_{42}(12)$
τΔΒ	Åσ	48	0	$S_{83}(54) + S_{64}(39)$
τ(C-C)1	A	24	2	$S_{63}(59)+S_{84}(37)$
τ _{Α Β} '	Ä	14	1	$S_{82}(68)$
	-			

^a Wavenumbers in cm⁻¹; intensities in km mol⁻¹. v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion. See Table S5 for definition of symmetry coordinates. ^b Scaled by 0.960 in the high wavenumbers region and by 0.988 in the low wavenumbers region (below 1800 cm⁻¹). ^c Only PED values greater than 10 % are given.

	Definition ^a	Sym- metry	Approximate description
\mathbf{S}_1	$\nu(N_{1A}-C_{2A})$	А	ν ring 1_A
S_2	$v(C_{4A}-C_{5A})$	А	$v ring 2_A$
S_3	$v(C_{2A}-C_{3A})$	А	$v ring 3_A$
S_4	$v(C_{5A}-C_{6A})$	А	v ring 4_A
S_5	$v(C_{3A}-C_{4A})$	А	$v ring 5_A$
S_6	$v(C_{6A}-N_{1A})$	А	$v ring 6_A$
S_7	$v(C_{3A}-C_{11A})$	А	$v(C-C)_A$
S_8	$v(C_{2A}-H_{7A})$	А	v(C-H)1 _A
S_9	$v(C_{6A}-H_{10A})$	А	v(C-H)2 _A
S_{10}	$\nu(C_{4A}-H_{8A})$	А	v(C-H)3 _A
S_{11}	$\nu(C_{5A}-H_{9A})$	А	v(C-H)4 _A
S_{12}	$v(C_{11A}=O_{15A})$	А	ν (C=O) _A
S_{13}	$v(C_{11A}-N_{12A})$	А	$v(C-N)_A$
S_{14}	$v(N_{12A}-H_{13A})$	А	v(N-H)1 _A
S_{15}	$\nu(N_{12A}-H_{14A})$	А	v(N-H)2 _A
S ₁₆	$ \delta(C_{2A}-N_{1A}-C_{6A})-\delta(N_{1A}-C_{6A}-C_{5A})+\delta(C_{6A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{4A}-C_{3A})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{1A}) $	А	δ ring 1_A
S_{17}	$\delta(H_{7A}-C_{2A}-N_{1A})-\delta(H_{7A}-C_{2A}-C_{3A})$	А	δ(C-H)1 _A
S_{18}	$\delta(H_{10A}-C_{6A}-C_{5A})-\delta(H_{10A}-C_{6A}-N_{1A})$	А	δ(C-H)2 _A
S_{19}	$\delta(H_{8A}-C_{4A}-C_{3A})-\delta(H_{8A}-C_{4A}-C_{5A})$	А	δ(C-H)3 _A
S_{20}	$\delta(H_{9A}-C_{5A}-C_{4A})-\delta(H_{9A}-C_{5A}-C_{6A})$	А	δ(C-H)4 _A
S_{21}	$\delta(C_{11A}-C_{3A}-C_{2A})-\delta(C_{11A}-C_{3A}-C_{4A})$	А	$w(C-C)_A$
S ₂₂	$\frac{2\delta(C_{2A}-N_{1A}-C_{6A})-\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+2\delta(C_{5A}-C_{4A}-C_{3A})-\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{A})}{\delta(C_{3A}-C_{2A}-N_{A})}$	А	δ ring 2_A
S ₂₃	$\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+\delta(C_{4A}-C_{3A}-C_{2A})-\delta(C_{3A}-C_{2A}-N_{1A})$	А	δ ring 3_A
S_{24}	$2\delta(N_{12A}-C_{11A}-C_{3A})-\delta(O_{15A}=C_{11A}-N_{12A})-\delta(O_{15A}=C_{11A}-C_{3A})$	А	$\delta(C-C-N)_A$
S_{25}	$\delta(O_{15A} = C_{11A} - N_{12A}) - \delta(O_{15A} = C_{11A} - C_{3A})$	А	δ(C=O) _A
S_{26}	$2\delta(H_{13A}-N_{12A}-H_{14A})-\delta(H_{13A}-N_{12A}-C_{11A})-\delta(H_{14A}-N_{12A}-C_{11A})$	А	$\delta(NH_2)_A$
S ₂₇	$\delta(H_{13A}-N_{12A}-C_{11A})-\delta(H_{14A}-N_{12A}-C_{11A})$	A	$W(NH_2)_A$
S ₂₈	$\tau(N_{1A}-C_{2A}-C_{3A}-C_{4A})-\tau(C_{2A}-C_{3A}-C_{4A}-C_{5A})+\tau(C_{3A}-C_{4A}-C_{5A}-C_{6A})-\tau(C_{4A}-C_{5A}-C_{6A}-N_{1A})+\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A}-C_{3A})$	А	τ ring 1_A
S ₂₉	$\begin{array}{l} 2\tau(N_{1A}-C_{2A}-C_{3A}-C_{4A})-\tau(C_{2A}-C_{3A}-C_{4A}-C_{5A})-\tau(C_{3A}-C_{4A}-C_{5A}-C_{6A})+2\tau(C_{4A}-C_{5A}-C_{6A}-N_{1A})-\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})\\ \end{array}$	А	$\tau \ ring \ 2_A$
S_{30}	$\tau(C_{2A}-C_{3A}-C_{4A}-C_{5A})-\tau(C_{3A}-C_{4A}-C_{5A}-C_{6A})+\tau(C_{5A}-C_{6A}-N_{1A}-C_{2A})-\tau(C_{6A}-N_{1A}-C_{2A}-C_{3A})$	А	τ ring 3_A
S_{31}	$\tau(O_{15A} = C_{11A} - N_{12A} - H_{13A}) + \tau(O_{15A} = C_{11A} - N_{12A} - H_{14A})$	А	τ (C-N) _A
S_{32}	$\tau(O_{15A}=C_{11A}-C_{3A}-C_{2A})+\tau(O_{15A}=C_{11A}-C_{3A}-C_{4A})$	А	τ (C-C) _A
S_{33}	$\gamma(H_{8A}-(C_{4A}-C_{3A})-C_{5A})$	А	γ(C-H)1 _A
S_{34}	$\gamma(H_{9A}-(C_{5A}-C_{4A})-C_{6A})$	А	γ(C-H)2 _A
S_{35}	$\gamma(H_{7A}-(C_{2A}-N_{1A})-C_{3A})$	А	γ(C-H)3 _A
S_{36}	$\gamma(H_{10A}-(C_{6A}-C_{5A})-N_{1A})$	А	ү (С-Н)4 _А
S_{37}	$\gamma(O_{15A} = (C_{11A} - N_{12A}) - C_{3A})$	А	γ(C=O) _A
S_{38}	$\gamma(C_{11A}-(N_{12A}-H_{14A})-H_{13A})$	А	$\gamma(NH_2)_A$
S_{39}	$\gamma(C_{11A}-(C_{3A}-C_{2A})-C_{4A})$	А	γ(C-C) _A
S_{40}	$v(N_{1B}-C_{2B})$	Α	$v ring 1_B$
S_{41}	$v(C_{4B}-C_{5B})$	А	$v \operatorname{ring} 2_{B}$
S_{42}	$v(C_{2B}-C_{3B})$	A	$v \operatorname{ring} 3_{\mathrm{B}}$
S ₄₃	$v(C_{SB}-C_{6B})$	A	$v \operatorname{ring} 4_{\mathrm{B}}$
S ₄₄	$v(C_{3B}-C_{4B})$	A	v ring $5_{\rm B}$
S ₄₅	$V(C_{6B}-N_{1B})$	A	$v \operatorname{ring} 6_{\mathrm{B}}$
5_{46}	$V(C_{3B}-C_{11B})$	А	$V(C-C)_B$

TABLE S7. Definition of symmetry coordinates used in the normal coordinate analysis for the *Dimer 2* of nicotinamide.

S_{47}	$\nu(C_{2B}-H_{7B})$	Α	ν (C-H)1 _B
S_{48}	$v(C_{6B}-H_{10B})$	А	ν(C-H)2 _B
S_{49}	$v(C_{4B}-H_{8B})$	Α	$v(C-H)3_B$
S_{50}	$v(C_{5B}-H_{9B})$	А	ν(C-H)4 _B
S_{51}	$v(C_{11B}=O_{15B})$	Α	ν (C=O) _B
S_{52}	$v(C_{11B}-N_{12B})$	А	$v(C-N)_B$
S_{53}	$v(N_{12B}-H_{13B})$	А	$v(N-H)1_B$
S_{54}	$v(N_{12B}-H_{14B})$	А	$v(N-H)2_B$
S_{55}	$\delta(C_{2B}-N_{1B}-C_{6B})-\delta(N_{1B}-C_{6B}-C_{5B})+\delta(C_{6B}-C_{5B}-C_{4B})-\delta(C_{5B}-C_{4B}-C_{3B})+\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{4B}-C_{4$	А	δ ring $1_{\rm B}$
	$\delta(C_{3B}-C_{2B}-N_{1B})$		-
S_{56}	$\delta(H_{7B}-C_{2B}-N_{1B})-\delta(H_{7B}-C_{2B}-C_{3B})$	А	δ(C-H)1 _B
S_{57}	$\delta(H_{10B}-C_{6B}-C_{5B})-\delta(H_{10B}-C_{6B}-N_{1B})$	А	δ (C-H)2 _B
S_{58}	$\delta(H_{8B}-C_{4B}-C_{3B})-\delta(H_{8B}-C_{4B}-C_{5B})$	А	δ (C-H)3 _B
S_{59}	$\delta(H_{9B}-C_{5B}-C_{4B})-\delta(H_{9B}-C_{5B}-C_{6B})$	Α	δ (C-H)4 _B
S_{60}	$\delta(C_{11B}-C_{3B}-C_{2B})-\delta(C_{11B}-C_{3B}-C_{4B})$	Α	$w(C-C)_B$
S_{61}	$2\delta(C_{2B}-N_{1B}-C_{6B})-\delta(N_{1B}-C_{6B}-C_{5B})-\delta(C_{6B}-C_{5B}-C_{4B})+2\delta(C_{5B}-C_{4B}-C_{3B})-\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{4B}-C_{5B}-C_{4B}-C_{4B}-C_{5B})-\delta(C_{4B}-C_{5B}-C_{4B}-C_{5B})-\delta(C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{5B}-C_{4B}-C_{5B}-C_{$	А	δ ring 2_B
	$\delta(C_{3B}-C_{2B}-N_{1B})$		
S ₆₂	$\delta(N_{1B}-C_{6B}-C_{5B})-\delta(C_{6B}-C_{5B}-C_{4B})+\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{3B}-C_{2B}-N_{1B})$	Α	δ ring 3_B
S_{63}	$2\delta(N_{12B}-C_{11B}-C_{3B})-\delta(O_{15B}=C_{11B}-N_{12B})-\delta(O_{15B}=C_{11B}-C_{3B})$	Α	δ (C-C-N) _B
S_{64}	$\delta(O_{15B}=C_{11B}-N_{12B})-\delta(O_{15B}=C_{11B}-C_{3B})$	А	δ (C=O) _B
S ₆₅	$2\delta(H_{13B}-N_{12B}-H_{14B})-\delta(H_{13B}-N_{12B}-C_{11B})-\delta(H_{14B}-N_{12B}-C_{11B})$	Α	$\delta(NH_2)_B$
S ₆₆	$\delta(H_{13B}-N_{12B}-C_{11B})-\delta(H_{14B}-N_{12B}-C_{11B})$	Α	$W(NH_2)_B$
S ₆₇	$\tau(N_{1B}-C_{2B}-C_{3B}-C_{4B})-\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})+\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})-\tau(C_{4B}-C_{5B}-C_{6B}-N_{1B})+$	Α	τ ring $1_{\rm B}$
C	$\tau(C_{5B}-C_{6B}-N_{1B}-C_{2B})-\tau(C_{6B}-N_{1B}-C_{2B}-C_{3B})$	٨	- · 2
S_{68}	$2\tau(N_{1B}-C_{2B}-C_{3B}-C_{4B})-\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})-\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})+2\tau(C_{4B}-C_{5B}-C_{6B}-N_{1B})-\tau(C_{4B}-C_{5B}-C_{5B}-C_{5$	А	τ ring $2_{\rm B}$
c	$t(C_{5B}-C_{6B}-N_{1B}-C_{2B})-t(C_{6B}-N_{1B}-C_{2B}-C_{3B})$	٨	-
S ₆₉	$\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B})-\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})+\tau(C_{5B}-C_{6B}-N_{1B}-C_{2B})-\tau(C_{6B}-N_{1B}-C_{2B}-C_{3B})$	A	τ ring $3_{\rm B}$
S ₇₀	$\tau(O_{15B}=C_{11B}-N_{12B}-H_{13B})+\tau(O_{15B}=C_{11B}-N_{12B}-H_{14B})$	A	$\tau(C-N)_B$
S ₇₁	$\tau(\mathbf{U}_{15B} = \mathbf{C}_{11B} - \mathbf{C}_{3B} - \mathbf{C}_{2B}) + \tau(\mathbf{U}_{15B} = \mathbf{C}_{11B} - \mathbf{C}_{3B} - \mathbf{C}_{4B})$	A	$\tau(C-C)_{\rm B}$
S ₇₂	$\gamma(H_{BB}-(C_{4B}-C_{3B})-C_{5B})$	A	$\gamma(C-H)I_B$
S ₇₃	$\gamma(H_{9B}-(C_{5B}-C_{4B})-C_{6B})$	A	$\gamma(C-H)2_B$
S ₇₄	$\gamma(H_{7B}-(C_{2B}-N_{1B})-C_{3B})$	A	$\gamma(C-H)S_B$
S75	$\gamma(H_{10B}-(C_{6B}-C_{5B})-N_{1B})$	A	$\gamma(C-H)4_B$
S76	$\gamma(O_{15B} - (C_{11B} - N_{12B}) - C_{3B})$	A	$\gamma(C-O)_{\rm B}$
S77	$\gamma(C_{11B}-(N_{12B}-R_{14B})-R_{13B})$	A	$\gamma(NH_2)_B$
S78	$\gamma(C_{11B}-(C_{3B}-C_{2B})-C_{4B})$	A	$\gamma(C-C)_B$
379 S	$V(O_{15B}N_{12A})+V(N_{12B}N_{1A})$	A	V _{AB}
S ₈₀	$V(O_{15B}N_{12A}) - V(N_{12B}N_{1A})$	A	V _{AB}
S ₈₁	$O(N_{12B}C_{2A}N_{1A}) = O(N_{12B}C_{6A}N_{1A})$	A	о _{АВ}
S ₈₂	$(N_{1A}C_{11B}N_{12B}H_{13B}) \neq ((N_{12B}C_{2A}N_{1A}C_{6A})$	A	ί _{ΑΒ}
S S	$u(1v_{1A}v_{11B}1v_{12B}n_{13B}) = u(1v_{12B}v_{2A}1v_{1A}v_{6A})$	A A	ι _{AB}
384	$\gamma(U_{11B}1v_{12A}1v_{1A}U_{6A})^{+}\gamma(U_{11B}1v_{12A}1v_{1A}U_{2A})^{+}\gamma(\Pi_{13B}1v_{12A}1v_{1A}U_{6A})^{+}$	A	ү АВ
	γ(11]3B1N]2AIN]AC2A)		

^a See Scheme 1 for atom numbering. v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion. Normalizing factors (*N*) are not provided; they can be calculated as $N_j = \sqrt{\sum_i \frac{1}{c_i^2}}$, where *j* refer to the vibrational coordinate and c_i are the coefficients associated with each coordinate in which the vibrational coordinate expands.

Approximate Description	Symmetry	Calculated Wavenumber ^b	Intensity	PED ^c	
ν(N-H)1 _B	А	3537	96	S ₅₃ (94)	
$v(N-H)2_A$	А	3532	120	$S_{15}(78) + S_{14}(22)$	
$v(N-H)1_A$	А	3388	283	$S_{14}(78) + S_{15}(22)$	
$v(N-H)2_B$	А	3293	625	S ₅₄ (94)	
v(C-H)3 _B	А	3075	5	$S_{49}(78) + S_{50}(21)$	
v(C-H)3 _A	А	3073	8	$S_{10}(66) + S_{11}(31)$	
$v(C-H)1_A$	А	3069	4	$S_8(97)$	
$v(C-H)4_{B}$	А	3059	6	$S_{50}(71)+S_{49}(21)$	
v(C-H)4	А	3059	10	$S_{11}(71)+S_{10}(30)$	
$v(C-H)2_{A}$	А	3032	13	S₀(93)	
$v(C-H)2_{P}$	A	3029	10	$S_{48}(92)$	
$v(C-H)1_{\rm B}$	A	3018	21	$S_{45}(92)$	
v(C=0)	A	1721	334	$S_{12}(78)$	
$v(C=O)_{A}$	A	1697	514	$S_{12}(70)$ $S_{c1}(51)+S_{c2}(22)+S_{c2}(11)$	
$\delta(NH_a)_{\rm B}$	A	1635	114	$S_{51}(51) + S_{65}(22) + S_{52}(11)$ $S_{cc}(71) + S_{c1}(23)$	
$\delta(NH)$	Δ	1629	105	$S_{65}(71) + S_{51}(23)$ $S_{65}(78)$	
$O(N11_2)_A$	A A	1616	105	$S_{26}(76)$ $S_{-}(30)+S_{-}(14)+S_{}(13)+S_{-}(13)$	
$v \operatorname{Img} 2_A$	A	1600	0 54	$S_2(50) + S_1(14) + S_{17}(15) + S_3(15)$ $S_2(20) + S_2(15) + S_2(11) + S_2(10)$	
V ring $2_{\rm B}$	A	1609	19	$S_{41}(59) + S_{40}(15) + S_{44}(11) + S_{58}(10)$ $S_{41}(59) + S_{40}(15) + S_{44}(11) + S_{58}(10)$	
$V \operatorname{ring} S_A$	A	1595	18	$S_5(37) + S_6(10) + S_4(13) + S_{18}(10)$	
V ring S_B	A	1585	8	$S_{43}(21)+S_{42}(14)+S_{44}(17)+S_{45}(14)+S_{57}(10)$	
$\delta(C-H)I_A$	A	1503	9	$S_{17}(39)+S_{20}(34)+S_{6}(11)$	
$\delta(C-H)I_B$	A	1491		$S_{59}(35) + S_{56}(33) + S_{45}(10)$	
$\delta(C-H)2_A$	A	1434	36	$S_{18}(42)+S_1(19)+S_3(11)$	
δ(C-H)2 _B	A	1431	38	$S_{57}(39)+S_{40}(19)+S_{42}(13)$	
$v(C-N)_B$	А	1377	201	$S_{52}(31)+S_{17}(16)+S_{46}(10)$	
δ(C-H)3 _A	А	1364	94	$S_{17}(31)+S_{52}(17)+S_{19}(12)$	
ν (C-N) _A	А	1355	130	$S_{13}(30)+S_7(16)+S_{25}(13)$	
δ(C-H)3 _B	А	1345	3	$S_{56}(44) + S_{58}(25) + S_{57}(10) + S_{59}(10)$	
$v ring 3_A$	А	1277	4	$S_1(42)+S_6(18)+S_3(15)$	
$v ring 3_B$	А	1273	6	$S_{40}(30)+S_{42}(17)+S_{45}(18)+S_{44}(11)$	
ν ring 6_A	А	1214	26	$S_{18}(52) + S_6(30)$	
$v ring 6_B$	А	1214	5	$S_{57}(30) + S_{40}(18) + S_{45}(16)$	
$\delta(C-H)4_A$	А	1149	2	$S_{20}(42)+S_{59}(30)+S_{41}(11)$	
δ (C-H)4 _B	А	1148	20	$S_{59}(41)+S_{20}(31)+S_{41}(11)$	
v ring $l_{\rm B}$	А	1120	9	$S_{58}(55) + S_{40}(12) + S_{41}(12)$	
$v ring 1_A$	А	1117	5	$S_{19}(43)+S_1(12)+S_2(11)+S_{20}(10)$	
$W(NH_2)_B$	А	1092	4	$S_{66}(48)+S_{52}(17)+S_{51}(10)$	
$W(NH_2)_A$	А	1089	6	$S_{27}(46)+S_{12}(28)$	
v ring 4	A	1047	3	$S_4(35)+S_4(19)+S_2(10)$	
$v \operatorname{ring} 4_{p}$	A	1047	1	$S_{42}(37) + S_{45}(16) + S_{41}(12)$	
δ ring 1.	A	1036	8	$S_{43}(69) + S_{43}(10) + S_{41}(12)$	
$\delta \operatorname{ring} 1_{\mathrm{A}}$	Δ	1027	14	$S_{10}(5) + S_{10}(10)$	
$\gamma(C-H)1$	Δ	10027	1	$S_{22}(59) + S_{24}(10)$	
$\chi(C-H)_{1}$	Λ Λ	900	1 2	$S_{-1}(A8) + S_{-1}(A2) + S_{-1}(10)$	
$\gamma(C-II)I_{\rm B}$	A	777 075	ے ۸	$S_{73}(+0) + S_{72}(+2) + S_{75}(10)$ $S_{-}(47) + S_{-}(21) + S_{-}(21)$	
$\gamma(C-\Pi)4_A$	A A	9/3 07/	4	$S_{36}(+7) + S_{33}(21) + S_{35}(21)$ S (48)+S (20)+S (14)	
$\gamma(C-H)4_B$	A	y/4 042	1	$S_{75}(+0) + S_{72}(27) + S_{74}(14)$ $S_{72}(+0) + S_{72}(10) + S_{72}(12)$	
$\gamma(C-H)_{3A}$	A	943	9	$S_{35}(75) + S_{36}(15) + S_{34}(15)$	
$\gamma(C-H)S_B$	A	930	1	$S_{74}(02) + S_{75}(12)$	
γ(C-H)2 _A	А	833	8	$S_{34}(35)+S_{37}(18)+S_{36}(15)+S_{39}(12)+S_{28}(12)$	

TABLE S8. DFT(B3LYP)/6-311++G(d,p) calculated wavenumbers and intensities, and normal coordinate analysis for *Dimer 2* of nicotinamide ^a

γ(C-H)2 _B	А	832	12	$S_{73}(34)+S_{76}(17)+S_{75}(14)+S_{78}(14)$
$v(C-C)_B$	А	779	7	$S_{46}(44) + S_{62}(40)$
$v(C-C)_A$	А	776	5	$S_{23}(33)+S_7(25)+S_{62}(18)$
γ (C=O) _A	А	754	10	$S_{37}(35)+S_{31}(15)+S_{70}(21)+S_{76}(12)$
δ (C=O) _B	А	748	71	$S_{64}(21)+S_{76}(20)+S_{70}(14)+S_{31}(12)$
γ (C=O) _B	А	718	7	$S_{67}(29)+S_{76}(18)+S_{28}(15)+S_{77}(12)$
τ ring l_A	А	712	41	$S_{28}(70) + S_{67}(26)$
$\tau \operatorname{ring} 1_{\mathrm{B}}$	А	700	24	$S_{67}(45)+S_{77}(21)+S_{76}(16)+S_{70}(10)$
$\delta \operatorname{ring} 3_{\mathrm{B}}$	А	645	17	$S_{62}(51)+S_{64}(34)$
$\delta(C=O)_A$	А	643	13	$S_{23}(34)+S_{22}(23)+S_{25}(20)$
$\delta \operatorname{ring} 2_{A}$	А	621	4	$S_{22}(39)+S_{61}(19)+S_{31}(13)+S_{25}(11)$
$\delta \operatorname{ring} 2_{\mathrm{B}}$	А	619	7	$S_{61}(54)+S_{22}(18)+S_{64}(12)$
τ (C-N) _A	А	615	13	$S_{31}(42)+S_{25}(17)+S_{37}(11)$
$\delta(C-C-N)_{B}$	А	516	9	$S_{63}(61) + S_{78}(11)$
$\delta(C-C-N)_A$	А	503	21	$S_{24}(67) + S_{38}(12)$
$\gamma(NH_2)_A$	А	464	179	S ₃₈ (84)
$\gamma(\rm NH_2)_B$	А	433	53	$S_{77}(65) + S_{70}(23)$
$\tau \operatorname{ring} 3_{A}$	А	415	6	$S_{30}(62) + S_{69}(28)$
$\tau \operatorname{ring} 3_{\mathrm{B}}$	А	410	25	$S_{69}(57)+S_{30}(20)+S_{77}(15)$
$\tau \operatorname{ring} 2_{A}$	А	394	13	$S_{29}(59)+S_{39}(11)$
τ (C-N) _B	А	385	10	$S_{52}(50)+S_{29}(18)+S_{46}(10)$
$\delta \operatorname{ring} 3_{A}$	А	375	1	$S_7(32)+S_{23}(17)+S_{25}(17)$
$\tau \operatorname{ring} 2_{\mathrm{B}}$	А	372	10	$S_{68}(40)+S_{46}(14)+S_{77}(13)$
$w(C-C)_B$	А	235	26	$S_{60}(76) + S_{83}(17)$
w(C-C) _A	А	220	19	$S_{21}(73)+S_{24}(17)$
$\gamma(C-C)_{B}$	А	163	4	$S_{78}(40) + S_{68}(28) + S_{82}(25)$
$\gamma(C-C)_A$	А	156	2	$S_{39}(60) + S_{29}(30)$
V _A B'	А	90	2	$S_{79}(63)+S_{32}(21)+S_{82}(13)$
τ (C-C) _A	А	87	7	$S_{32}(44)+S_{84}(41)+S_{71}(15)$
δ _{AB}	А	72	1	$S_{81}(81) + S_{84}(19)$
τ_{AB}	А	68	1	$S_{82}(62)+S_{71}(21)+S_{32}(17)$
τ (C-C) _B	А	47	1	$S_{82}(57)+S_{80}(24)+S_{71}(21)$
Уд в	А	34	2	$S_{84}(70)+S_{80}(13)+S_{71}(11)$
v _{AB} ''	А	20	1	$S_{80}(71)+S_{81}(26)$
τ_{AB} ''	А	15	1	S ₈₃ (95)
				. /

^a Wavenumbers in cm⁻¹; intensities in km mol⁻¹. v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion. See Table S7 for definition of symmetry coordinates. ^b Scaled by 0.960 in the high wavenumbers region and by 0.988 in the low wavenumbers region (below 1800 cm⁻¹). ^c Only PED values greater than 10 % are given.

	Definition ^a	Sym- metry	Approximate description
\mathbf{S}_1	$\nu(N_{1A}-C_{6A})+\nu(N_{1B}-C_{6B})$	Ag	v ring 1'
S_2	$v(N_{1A}-C_{6A})-v(N_{1B}-C_{6B})$	B_u	v ring 1''
S_3	$\nu(N_{1A}-C_{2A})+\nu(N_{1B}-C_{2B})$	A_g	v ring 2'
S_4	$v(N_{1A}-C_{2A})-v(N_{1B}-C_{2B})$	\mathbf{B}_{u}	v ring 2''
S_5	$v(C_{2A}-C_{3A})+v(C_{2B}-C_{3B})$	A_{g}	v ring 3'
S_6	$v(C_{2A}-C_{3A})-v(C_{2B}-C_{3B})$	\mathbf{B}_{u}	v ring 3''
S_7	$v(C_{3A}-C_{4A})+v(C_{3B}-C_{4B})$	Ag	v ring 4'
S_8	$v(C_{3A}-C_{4A})-v(C_{3B}-C_{4B})$	\mathbf{B}_{u}	v ring 4''
S_9	$v(C_{4A}-C_{5A})+v(C_{4B}-C_{5B})$	Ag	v ring 5'
\mathbf{S}_{10}	$v(C_{4A}-C_{5A})-v(C_{4B}-C_{5B})$	B_u	v ring 5''
S_{11}	$v(C_{5A}-C_{6A})+v(C_{5B}-C_{6B})$	A_{g}	v ring 6'
S ₁₂	$v(C_{5A}-C_{6A})-v(C_{5B}-C_{6B})$	$\mathbf{B}_{\mathbf{u}}$	v ring 6''
S ₁₃	$v(C_{6A}-H_{10A})+v(C_{6B}-H_{10B})$	A_{g}	v(C-H)1'
S_{14}	$v(C_{6A}-H_{10A})-v(C_{6B}-H_{10B})$	$\tilde{B_u}$	v(C-H)1"
S ₁₅	$v(C_{2A}-C_{11A})+v(C_{2B}-C_{11B})$	A_{g}	v(C-C)'
S ₁₆	$v(C_{2A}-C_{11A})-v(C_{2B}-C_{11B})$	$\tilde{\mathbf{B}_u}$	v(C-C)''
S ₁₇	$\nu(C_{3A}-H_{7A})+\nu(C_{3B}-H_{7B})$	A_{g}	v(C-H)2'
S ₁₈	$v(C_{3A}-H_{7A})-v(C_{3B}-H_{7B})$	$\tilde{\mathbf{B}_u}$	v(C-H)2"
S ₁₉	$\nu(C_{4A}-H_{8A})+\nu(C_{4B}-H_{8B})$	Ag	v(C-H)3'
S ₂₀	$v(C_{4A}-H_{8A})-v(C_{4B}-H_{8B})$	$\tilde{\mathbf{B}_{u}}$	v(C-H)3"
S_{21}	$v(C_{5A}-H_{9A})+v(C_{5B}-H_{9B})$	Ag	v(C-H)4'
S ₂₂	$v(C_{5A}-H_{9A})-v(C_{5B}-H_{9B})$	$\tilde{\mathbf{B}_{u}}$	v(C-H)4"
S ₂₃	$v(C_{11A}=O_{15A})+v(C_{11B}=O_{15B})$	Ag	v(C=O)'
S ₂₄	$v(C_{11A}=O_{15A})-v(C_{11B}=O_{15B})$	$\tilde{\mathbf{B}_{u}}$	v(C=O)''
S ₂₅	$v(C_{11A}-N_{12A})+v(C_{11B}-N_{12B})$	Ag	v(C-N)'
S ₂₆	$v(C_{11A}-N_{12A})-v(C_{11B}-N_{12B})$	$\tilde{\mathbf{B}_{u}}$	v(C-N)''
S ₂₇	$v(N_{12}-H_{13})+v(N_{12}-H_{13})$	Ag	v(N-H)1'
S_{28}	$v(N_{12}-H_{13})-v(N_{12}-H_{13})$	$\tilde{\mathbf{B}_{u}}$	v(N-H)1"
S ₂₉	$v(N_{12}-H_{14})+v(N_{12}-H_{14})$	Ag	v(N-H)2'
S ₃₀	$v(N_{12}-H_{14})-v(N_{12}-H_{14})$	$\tilde{\mathbf{B}_{u}}$	v(N-H)2"
S ₃₁	$\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+\delta(C_{5A}-C_{4A}-C_{3A})-\delta(C_{4A}-C_{3A}-C_{2A})+\delta(C_{3A}-C_{2A}-N_{1A})-\delta(C_{2A}-N_{1A}-C_{6A})+\delta(N_{1B}-C_{6B}-C_{5B})-\delta(C_{6B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{3B})-\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{4B}-C_{3B}-C_{4B})+\delta(C_{4B}-C_{3B}-C_{4B})+\delta(C_{4B}-C_{3B}-C_{4B})+\delta(C_{4B}-C_{3B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C$	Ag	δ ring 1'
S ₃₂	$\delta(N_{1A}-C_{6A}-C_{5A})-\delta(C_{6A}-C_{5A}-C_{4A})+\delta(C_{5A}-C_{4A}-C_{3A})-\delta(C_{4A}-C_{3A}-C_{2A})+\delta(C_{3A}-C_{2A}-N_{1A})-\delta(C_{2A}-N_{1A}-C_{6A})-\delta(N_{1B}-C_{6B}-C_{5B})+\delta(C_{6B}-C_{5B}-C_{4B})-\delta(C_{5B}-C_{4B}-C_{3B})+\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{4B}-C_{3B}-C_{4B})+\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{4B}-C_{4B}-C_{3B})+\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B})-\delta(C_{4B}-C_$	B_u	δ ring 1''
S22	$\delta(H_{10,4} - C_{\ell,4} - C_{\ell,4}) - \delta(H_{10,4} - C_{\ell,4} - N_{1,4}) + \delta(H_{10,7} - C_{\ell,7} - C_{\ell,7}) - \delta(H_{10,7} - C_{\ell,7} - N_{1,7})$	Α	δ(C-H)1'
	$\delta(H_{10} + C_{4} + C_{5}) + \delta(H_{10} + C_{4} + N_{14}) + \delta(H_{10} + C_{20} + C_{20}) + \delta(H_{100} + C_{20} + N_{10})$	B.	δ(C-H) 1''
~ 54 S35	$\delta(H_{7A}-C_{2A}-C_{2A})-\delta(H_{7A}-C_{2A}-C_{4A})+\delta(H_{7D}-C_{2D}-C_{2D})-\delta(H_{7D}-C_{4D}-C_{4D})$	A "	$\delta(C-H)^2$
S36	$\delta(H_{7A} - C_{2A} - C_{2A}) = \delta(H_{7A} - C_{2A} - C_{4A}) = \delta(H_{7B} - C_{2B} - C_{2B}) = \delta(H_{7B} - C_{2B} - C_{4B})$	B.	δ(C-H)2''
S ₃₇	$\delta(H_{2A}-C_{2A}) = \delta(H_{2A}-C_{2A}) + \delta(H_{2A}-C_{2A}) + \delta(H_{2D}-C_{2D}) + \delta(H_{2D}-C_{2D}-C_{2D}) + \delta(H_{2D}-C_{2D}-C_{2D}-C_{2D}) + \delta(H_{2D}-C_{2D}-C_{2D}-C_{2D}) + \delta(H_{2D}-C_{2D}-C_{2D}-C_{2D}) + \delta(H_{2D}-C_{2D}-C_{2D}-C_{2D}-C_{2D}) + \delta(H_{2D}-C_{2D}-C_{2D}-C_{2D}-C_{2D}-C_{2D}) + \delta(H_{2D}-C_{2D}-C_{2D}-C_{2D}-C_{2D}-C_{2D}-C_{2D}) + \delta(H_{2D}-C_{2$	A _a	δ(C-H)3'
S ₃₀	$\delta(H_{0A}-C_{4A}-C_{2A})-\delta(H_{0A}-C_{4A}-C_{5A})-\delta(H_{0B}-C_{4B}-C_{2D})+\delta(H_{0D}-C_{4D}-C_{5D})$	B.	δ(C-H)3''
S30	$\delta(H_{0A}-C_{5A}-C_{4A})-\delta(H_{0A}-C_{5A}-C_{6A})+\delta(H_{0D}-C_{5D}-C_{4D})-\delta(H_{0D}-C_{5D}-C_{4D})$	A _a	δ(C-H)4'
S40	$\delta(H_{0A}-C_{5A}-C_{4A})-\delta(H_{0A}-C_{5A}-C_{6A})-\delta(H_{0B}-C_{5B}-C_{4B})+\delta(H_{0B}-C_{5B}-C_{4B})$	B.,	$\delta(C-H)4''$
S41	$\delta(C_{11A}-C_{2A}-N_{1A})-\delta(C_{11A}-C_{2A}-C_{2A})+\delta(C_{11B}-C_{2B}-N_{1B})-\delta(C_{11B}-C_{2B}-C_{2B})$	A _a	w(C-C)'
S42	$\delta(C_{11A} - C_{2A} - N_{1A}) = \delta(C_{11A} - C_{2A} - C_{2A}) = \delta(C_{11B} - C_{2B} - N_{1B}) = \delta(C_{11B} - C_{2B} - C_{2B})$	B.	w(C-C)''
S42	$2\delta(N_{1A} - C_{2A} - C_{2A}) - \delta(C_{2A} - C_{2A} - C_{2A}) - \delta(C_{2A} - C_{2A} - C_{2A}) + 2\delta(C_{2A} - C_{2A} - C_{2A}) - \delta(C_{2A} - $	A	$\delta ring 2'$
543	$\delta(C_{2A}-N_{1A}-C_{6A})+2\delta(N_{1B}-C_{6B}-C_{5B})-\delta(C_{6B}-C_{5B}-C_{4B})-\delta(C_{5B}-C_{4B}-C_{3B})+2\delta(C_{4B}-C_{3B}-C_{2B})-\delta(C_{3B}-C_{2B}-N_{1B})-\delta(C_{2B}-N_{1B}-C_{6B})$	лg	5 mg 2
S44	$2\delta(N_{14}-C_{24}-C_{24})-\delta(C_{24}-C_{24})-\delta(C_{24}-C_{24}-C_{24})+2\delta(C_{24}-C_{24}-C_{24})-\delta(C_{24}-C_{24}-N_{14})-\delta(C_{24}-N_{14})-\delta(C_{24$	B _n	δ ring 2''

TABLE S9. Definition of symmetry coordinates used in the normal coordinate analysis for *Dimer 1* of picolinamide.

	$\delta(C_{2A}-N_{1A}-C_{6A})-2\delta(N_{1B}-C_{6B}-C_{5B})+\delta(C_{6B}-C_{5B}-C_{4B})+\delta(C_{5B}-C_{4B}-C_{3B})-2\delta(C_{4B}-C_{3B}-C_{2B})+\delta(C_{2B}-C_{2B}-N_{1B})+\delta(C_{2B}-C_{4B}-C_{2B})+\delta(C_{2B}-C_{4B}-C_{$		
S_{45}	$\delta(C_{6A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{4A}-C_{3A})+\delta(C_{3A}-C_{2A}-N_{1A})-\delta(C_{2A}-N_{1A}-C_{6A})+\delta(C_{6B}-C_{5B}-C_{4B})-\delta(C_{5A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A})+\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A})+\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A})-\delta(C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A}-C_{5A})+\delta(C_{5A}-C$	A_g	δ ring 3'
	$\delta(C_{5B}-C_{4B}-C_{3B})+\delta(C_{3B}-C_{2B}-N_{1B})-\delta(C_{2B}-N_{1B}-C_{6B})$		
S ₄₆	$\delta(C_{6A}-C_{5A}-C_{4A})-\delta(C_{5A}-C_{4A}-C_{3A})+\delta(C_{3A}-C_{2A}-N_{1A})-\delta(C_{2A}-N_{1A}-C_{6A})-\delta(C_{6B}-C_{5B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B})+\delta(C_{4B}-C_$	B_u	δ ring 3''
S ₄₇	$2\delta(N_{45} - C_{45} - C_{55}) = \delta(C_{55} - C_{25} - N_{15}) = \delta(C_{25} - C_{15} - C_{45}) + 2\delta(N_{45} - C_{45} - C_{45}) = \delta(C_{45} - C_{45}) = \delta(C_{45}$	А	$\delta(C_{-}C_{-}N)$
24/	$\delta(O_{12A} = C_{11A} = C_{2A}) \circ (O_{15A} = C_{11A} = C_{12A}) \circ (O_{15A} = O_{11A} = O_{2A}) \circ 20(11_{22} = O_{113} = O_{22})$	1 ig	0(0 0 10)
Sie	$2\delta(N_{12B} - C_{11B} - N_{12B}) = \delta(O_{12B} - C_{11B} - C_{2B})$	В	δ(C-C-N)"
048	$\delta(O_{12} = C_{12} - V_{12}) + \delta(O_{13} + C_{11} - V_{12}) + \delta(O_{13} + C_{11} - V_{22}) + \delta(O_{13} + C_{11} - V_{22}) + \delta(O_{13} + C_{11} - V_{22}) + \delta(O_{13} + C_{13} - V_{23}) + \delta(O_{13} + C_{13} - V_{13}) + \delta(O_$	Du	0(0-0-11)
S.	$\delta(O_{15B} - C_{11B} - V_{12B})^{+} \delta(O_{15B} - C_{11B} - C_{2B})$ $\delta(O_{15B} - C_{11B} - V_{12B})^{+} \delta(O_{15B} - C_{11B} - C_{2B})$	Δ	$\delta(C=0)$
S49	$\delta(O_{15A} - C_{11A} - V_{12A}) = \delta(O_{15A} - C_{11A} - C_{2A}) + \delta(O_{15B} - C_{11B} - V_{12B}) = \delta(O_{15B} - V$	R R	$\delta(C=0)$
S	$0(O_{15A}-C_{11A}-Iv_{12A})-0(O_{15A}-C_{11A}-C_{2A})-0(O_{15B}-C_{11B}-Iv_{12B})+0(O_{15B}-C_{11B}-C_{2B})$ $2\delta(U = N = U = 0$ $\delta(U = N = C = 0$ $\delta(U = N = C = 0)$	Δ _u	S(NU)
351	$\sum_{i=1}^{20} \sum_{i=1}^{10} \sum_{$	Λg	$O(1N11_2)$
S.,	28/H N H $38/H$ N C $38/H$ N C $38/H$ N H $+$	в	8(NH)"
052	$\delta(H_{12A} - V_{12A} - U_{14A}) + \delta(H_{12A} - V_{12A} - C_{11A}) + \delta(H_{12A} - V_{12A} - C_{11A}) + 2\delta(H_{13B} - V_{12B} - H_{14B}) + \delta(H_{12A} - V_{12A} - C_{11A}) + \delta(H_{12A} - C_{11A}) + $	Du	0(1112)
S.,	$\delta(H - N - C) = \delta(H - N - C) + \delta(H - N - C) = \delta(H - N - C)$	Δ	w(NH _a)'
S	$\delta(\Pi_{13A}^{-1} V_{12A}^{-1} C_{11A}^{-1} V_{12A}^{-1} C_{11A}^{-1} \delta(\Pi_{13B}^{-1} V_{12B}^{-1} C_{11B}^{-1} \delta(\Pi_{14B}^{-1} V_{12B}^{-1} C_{11B}^{-1})$	R R	$w(NH_2)$
S	$\sigma(\Gamma_{13A} - \Gamma_{12A} - C_{11A}) - \sigma(\Gamma_{14A} - \Gamma_{12A} - C_{11A}) - \sigma(\Gamma_{13B} - \Gamma_{12B} - C_{11B}) - \sigma(\Gamma_{14B} - \Gamma_{12B} - C_{11B})$	Δ _u	$\pi ring 1'$
355	$\pi(C_{6A}^{-1}N_{1A}^{-1}C_{2A}^{-1}C_{3A}^{-1}) = \pi(C_{2A}^{-1}C_{3A}^{-1}C_{4A}^{-1}) = \pi(C_{2A}^{-1}C_{3A}^{-1}C_{4A}^{-1}C_{5A}^{-1}) = \pi(C_{2A}^{-1}C_{2A}^{-1}C_{4A}^{-1}) = \pi(C_{2A}^{-1}C_{2A}^{-1}C_{4A}^{-1}) = \pi(C_{2A}^{-1}C_{2A}^{-1}C_{4A}^{-1}) = \pi(C_{2A}^{-1}C_{2A}^{-1}C_{4A}^{-1}) = \pi(C_{2A}^{-1}C_{2A}^{-1}) = \pi(C_{2A}^{-1}) =$	Λ_{u}	t ling l
	$\tau(C + C + C + C + C + C + C + C + C + C +$		
S	$\tau(C_{2B}-C_{3B}-C_{4B}-C_{5B}) + \tau(C_{3B}-C_{4B}-C_{5B}-C_{6B}) + \tau(C_{4B}-C_{5B}-C_{6B}-1) + \tau(C_{5B}-C_{6B}-1) + \tau(C_{5B}-1) + \tau(C_{5B}-1)$	D	τ ring 1''
056	$\tau(C \cap C \cap N) = \tau(C \cap N \cap C) = \tau(C \cap N \cap C) = \tau(C \cap N) = \tau(C \cap C) = \tau(C \cap C)$	Dg	t Ing I
	$\tau(C + C + C + T) = \tau(C + T$		
S	$\frac{(C_{2B}-C_{3B}-C_{4B}-C_{5B})}{2\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{6B}-\tau(C_{1B})+\tau(C_{5B}-C_{6B}-\tau(C_{1B}-C_{2B}))}{2\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}-C_{5B}-C_{5B}-C_{6B}-\tau(C_{4B}-C_{5B}$	Δ	τ ring 2'
057	$\frac{1}{2}\left(\left(\sum_{A}-\sum_{A}-\sum_{A}\right)+\frac{1}{2}\left(\left(\sum_{A}-\sum_{A}-\sum_{A}-\sum_{A}-\sum_{A}\right)+\frac{1}{2}\left(\left(\sum_{A}-\sum_{A}-\sum_{A}-\sum_{A}-\sum_{A}\right)+\frac{1}{2}\left(\sum_{A}-\sum_{A}-\sum_{A}-\sum_{A}-\sum_{A}-\sum_{A}\right)+\frac{1}{2}\left(\sum_{A}-\sum_{A}$	\mathbf{n}_{u}	t Hing 2
	$\tau(C_{4A}-C_{5A}-C_{6A}-1)\tau_{1A} = \tau(C_{5A}-C_{6A}-1)\tau_{1A}-C_{2A} = \tau(C_{4B}-1)\tau_{1B}-C_{2B}-C_{3B} = \tau(T_{1B}-C_{2B}-C_{4B}) = \tau(C_{4A}-C_{5A}-C_{6A}-1)\tau_{1A} = \tau(C_{4A}-C_{4A}-1)\tau_{1A} = \tau(C_{4A}-C_{4A}-1)\tau_{1A} = \tau(C_{4A}-C_{4A}-1)\tau_{1A} = \tau(C_{4A}-1)\tau_{1A} = \tau$		
See	$2\tau(C_{4B}-C_{5B}-C_{4B}-C_{5B})+2\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})+\tau(C_{4B}-C_{5B}-C_{6B}-T_{1B})+\tau(C_{5B}-C_{6B}-T_{1B}-C_{2B})$	R	τ ring 2"
058	$\frac{1}{2} \left(\left(C_{2A} - C_{3A} - C_{3A} - C_{4A} - C_{3A} - C_{4A} - C_{5A} - C_{4A} - C_{5A} - C_{5A$	Dg	t Hing 2
	$T(C_{4A}-C_{5A}-C_{6A}-1)_{A} = T(C_{5A}-C_{6A}-1)_{A} = C_{2B}-C_{3B} = T(C_{4B}-C_{2B}-C_{3B}) + T(C_{4B}-C_{2B}-C_{3B}) + T(C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}-C_{4B}) + T(C_{4B}-C_$		
See	$\tau(N_{12}-C_{3B}-C_{4B}-C_{5B})-\tau(C_{3B}-C_{4B}-C_{5B}-C_{6B})+\tau(C_{4B}-C_{5B}-C_{6B}-1_{1B})+\tau(C_{5B}-C_{6B}-1_{1B}-2_{2B})$	Δ	τ ring 3'
0 39	$T(N_{1A} \cup_{2A} \cup_{3A} \cup_{4A}) = T(C_{2B} - C_{4B} - C_{5B}) + T(C_{4B} - C_{5B} - C_{4B} - N_{1A}) = T(C_{5B} - C_{4B} - C_{5B}) + T(C_{4B} - C_{5B} - C_{4B} - N_{1B}) = T(C_{5B} - C_{5B} - C_{5B}) + T(C_{4B} - C_{5B} - C_{5B} - C_{5B}) + T(C_{4B} - C_{5B} - C_{5B} - C_{5B}) = T(C_{5B} - C_{5B} - C_{5B}) + T(C_{5B} - C_{5B} - C_{5B}) + T(C_{5B} - C_{5B} - C_{5B}) = T(C_{5B} - C_{5B} - C_{5B}) + T(C_{5B} - C_{5B} - C_{5B}) + T(C_{5B} - C_{5B} - C_{5B}) = T(C_{5B} - C_{5B} - C_{5B}) + T(C_{5B} - C_{5B} - C_{5B}) = T(C_{5B} - C_{5B} - C_{5B}) = T(C_{5B} - C_{5B} - C_{5B}) + T(C_{5B} - C_{5B} - C_{5B}) = T(C_{5B} - C_{5B} - C_{5B$	1 L u	viling 5
S60	$T(N_{14}-C_{24}-C_{24}-C_{44})-T(C_{24}-C_{24}-C_{54})+T(C_{44}-C_{54}-C_{54}-C_{44})-T(C_{54}-C_{54}-C_{54}-C_{54})$	B-	τ ring 3"
~00	$T(N_{1A} - C_{2A} - C_{3A} - C_{4A}) + T(C_{2A} - C_{3A} - C_{4A} - C_{5A}) + T(C_{4A} - C_{5A} - C_{6A} - C_{4A}) + T(C_{4A} - C_{5A} - C_{4A} - C_{4A}) + T(C_{4A} - C_{4A} - C_{4A} - C_{4A}) + T(C_{4A} - C_{4A} - C_{4A} - C_{4A} - C_{4A}) + T(C_{4A} - C_{4A} - C_{4A} - C_{4A} - C_{4A}) + T(C_{4A} - C_{4A} - C_{4A$	Ðg	ving 5
S61	$\tau(O_{15} = C_{114} - N_{124} - H_{124}) + \tau(O_{15} = C_{112} - N_{129} - H_{129})$	Α.,	τ (C-N)'
S62	$\tau(O_{154} = C_{114} - N_{124} - H_{134}) \cdot \tau(O_{155} = C_{115} - N_{125} - H_{135})$	B-	$\tau(C-N)$
S63	$\tau(O_{15A} = C_{11A} - C_{2A} - N_{1A}) + \tau(O_{15B} = C_{11B} - C_{2B} - N_{1D})$	A _u	$\tau(C-C)1'$
S64	$\tau(O_{15A} = C_{11A} - C_{2A} - N_{1A}) - \tau(O_{15B} = C_{11B} - C_{2B} - N_{1B})$	B _a	$\tau(C-C)1''$
S65	$T(C_{114} - C_{24} - N_{14} - C_{24}) + T(C_{115} - C_{25} - N_{115} - C_{25})$	A _u	$\tau(C-C)^{2}$
- 05 S66	$T(C_{11A} - C_{2A} - N_{1A} - C_{CA}) - T(C_{11B} - C_{2B} - N_{1B} - C_{CB})$	B _a	$\tau(C-C)2''$
S67	$\mathcal{V}(H_{0A}-(C_{4A}-C_{2A})-C_{5A})+\mathcal{V}(H_{0B}-(C_{4B}-C_{2B})-C_{5B})$	A.	γ (C-H)1'
See	$\mathcal{N}(H_{0A} - (C_{4A} - C_{2A}) - C_{5A}) - \mathcal{N}(H_{0D} - (C_{4D} - C_{2D}) - C_{5D})$	B _a	γ (C-H)1"
~ 08 S69	$\chi(H_{10A} - (C_{4A} - N_{1A}) - C_{5A}) + \chi(H_{10B} - (C_{4B} - N_{1B}) - C_{5B})$	A _u	γ (C-H)2'
S ₇₀	\mathcal{M} H 10A - (C (A - N 1A) - C (A) - \mathcal{M} (M 10B (C (D - N 1B) - C (D)) - \mathcal{M} (M 10A - (C (A - N 1A) - C (A) - \mathcal{M} (M 10B - (C (D - N 1B) - C (D)))	Ba	$\gamma(C-H)^{2}$
S ₇₁	$\gamma(H_{0A}-(C_{5A}-C_{4A})-C_{5A})+\gamma(H_{0B}-(C_{5B}-C_{4B})-C_{5B})$	- g Au	γ (C-H)3'
S ₇₂	$\gamma(-5A (-5A - 4A) - 6A) - \gamma(-5B - 4B) - 6B)$ $\gamma(H_{0A} - (C_{5A} - C_{4A}) - C_{5A}) - \gamma(H_{0D} - (C_{5D} - C_{4D}) - C_{5D})$	Β _α	γ(C-H)3"
S ₇₃	$\gamma(-3A (-3A - 4A) - 6A) + \gamma(-3B (-3B - 4B) - 6B)$ $\gamma(H_{7A} - (C_{3A} - C_{7A}) + \gamma(H_{7B} - (C_{3B} - C_{2B}) - C_{4B})$	A	γ(C-H)4'
S ₇₄	$\gamma(-7_{A}(-3_{A}-2_{A})-4_{A}) - \gamma(-7_{B}(-3_{B}-2_{B})-4_{B})$ $\gamma(H_{7A}-(C_{3A}-C_{7A})-C_{AA})-\gamma(H_{7B}-(C_{3B}-C_{7B})-C_{4B})$	\mathbf{B}_{α}	γ(C-H)4"
S ₇₅	$\gamma(O_{15A} = (C_{11A} - N_{12A}) - C_{2A}) + \gamma(O_{15B} = (C_{11B} - N_{12B}) - C_{2B})$	A	γ (C=O)'
S ₇₆	$\gamma(O_{15A} = (C_{11A} - N_{12A}) - C_{2A}) - \gamma(O_{15B} = (C_{11B} - N_{12B}) - C_{2B})$	Βσ	γ(C=O)''
S ₇₇	$\gamma(C_{11A} - (N_{12A} - H_{14A}) - H_{13A}) + \gamma(C_{11B} - (N_{12B} - H_{14B}) - H_{13B})$	A	$\gamma(\rm NH_2)$
S_{78}	$\gamma(C_{11A}-(N_{12A}-H_{14A})-H_{13A})-\gamma(C_{11B}-(N_{12B}-H_{14B})-H_{13B})$	В"	$\gamma(NH_2)$ "
S ₇₉	$\nu(O_{15A}H_{14B}) + \nu(O_{15B}H_{14A})$	Åg	v _{AB} '
\mathbf{S}_{80}	$v(O_{15A}H_{14B})-v(O_{15B}H_{14A})$	$\tilde{\mathbf{B}_u}$	ν _{AB} ''
\mathbf{S}_{81}	$\delta(C_{11A}N_{12B}C_{11B})$ - $\delta(C_{11A}O_{15B}C_{11B})$	A_{g}	$\delta_{A\dots B}$
		-	

S_{82}	$\tau(C_{11B}N_{12A}C_{11A}O_{15A}) + \tau(C_{11A}N_{12B}C_{11B}O_{15B})$	Au	τ_{AB}
S ₈₃	$\tau(C_{11B}N_{12A}C_{11A}O_{15A})-\tau(C_{11A}N_{12B}C_{11B}O_{15B})$	$\mathbf{B}_{\mathbf{g}}$	τ_{AB} ''
S_{84}	$\gamma(N_{12A}C_{11A}C_{11B}N_{12B}) + \gamma(N_{12A}C_{11A}C_{11B}O_{15B}) + \gamma(O_{15A}C_{11A}C_{11B}N_{12B}) +$	A_u	γ _{AB}
	$\gamma(O_{15A}C_{11A}C_{11B}O_{15B})$		

а 1 for numbering. δ, bending; See Scheme atom v, bond stretching; rocking; w, wagging; torsion; γ, τ, s, symmetric; as, asymmetric. Normalizing factors (N) are not provided; they can be calculated as $N_j = \sqrt{\sum_i \frac{1}{c_i^2}}$, where j refer to the vibrational coordinate and c_i are the coefficients associated with each coordinate in which the vibrational coordinate expands.

Approximate Description	Symmetry	Calculated Wavenumber ^b	Intensity	PED ^c
v(N-H)1'	Ag	3492	0	S ₂₇ (95)
v(N-H)1"	$\tilde{\mathbf{B}_u}$	3491	442	S ₂₈ (95)
v(N-H)2"	B_u	3224	2265	S ₃₀ (96)
v(N-H)2'	A_{g}	3185	0	S ₂₉ (97)
v(C-H)2'	A_{g}	3086	0	S ₁₇ (95)
v(C-H)2"	$\mathbf{B}_{\mathbf{u}}$	3086	5	S ₁₈ (95)
v(C-H)4'	A_{g}	3066	0	$S_{21}(76) + S_{19}(18)$
v(C-H)4"	$\mathbf{B}_{\mathbf{u}}$	3066	33	$S_{22}(76)+S_{20}(18)$
v(C-H)3'	A_{g}	3048	0	$S_{19}(77)+S_{21}(17)$
v(C-H)3''	$\mathbf{B}_{\mathbf{u}}$	3048	17	$S_{20}(77)+S_{22}(17)$
v(C-H)1'	Ag	3029	0	S ₁₃ (92)
v(C-H)1''	$\mathbf{B}_{\mathbf{u}}$	3029	35	S ₁₄ (92)
v(C=O)''	$\mathbf{B}_{\mathbf{u}}$	1719	704	$S_{24}(61)+S_{26}(17)$
v(C=O)'	Ag	1694	0	$S_{23}(43)+S_{51}(28)+S_{25}(14)$
v ring 3''	$\mathbf{B}_{\mathbf{u}}$	1609	24	$S_8(20)+S_6(18)+S_{12}(16)+S_2(10)$
v ring 3'	Ag	1609	0	$S_7(21)+S_5(19)+S_{11}(17)+S_1(10)$
δ(NH ₂)''	\mathbf{B}_{u}	1603	213	$S_{52}(80)+S_{24}(11)$
$\delta(NH_2)'$	Ag	1596	0	$S_{51}(33)+S_{9}(19)$
v ring 5''	\mathbf{B}_{u}	1591	79	$S_{10}(33) + S_4(15)$
v ring 5'	Ag	1587	0	$S_{51}(30)+S_{23}(26)+S_{9}(15)$
v ring 2'	Ag	1482	0	$S_{33}(30)+S_3(18)+S_{35}(16)+S_{11}(10)$
v ring 2''	$\mathbf{B}_{\mathbf{u}}$	1482	13	$S_{34}(31)+S_4(19)+S_{36}(16)$
δ(C-H)4'	Ag	1454	0	$S_{39}(28) + S_{37}(13)$
δ(C-H)4"	$\mathbf{B}_{\mathbf{u}}$	1451	21	$S_{40}(30)+S_{38}(17)+S_6(11)$
v(C-N)'	A_{g}	1411	0	$S_{25}(33)+S_{53}(14)+S_{37}(12)$
v(C-N)''	$\mathbf{B}_{\mathbf{u}}$	1398	451	$S_{26}(33)+S_{54}(15)+S_{16}(12)$
δ(C-H) 1"	$\mathbf{B}_{\mathbf{u}}$	1302	8	$S_{34}(41)+S_6(13)+S_{36}(13)+S_4(12)$
δ(C-H)1'	A_{g}	1302	0	$S_{33}(41)+S_5(13)+S_{35}(13)+S_3(12)$
v ring 1'	A_g	1283	0	$S_1(41)+S_3(14)+S_{11}(11)$
v ring 1''	B_u	1282	28	$S_2(40)+S_4(14)+S_{12}(11)$
v ring 4'	A_g	1177	0	$S_{31}(18) + S_7(17) + S_{15}(15) + S_{53}(14)$
v ring 4''	$\mathbf{B}_{\mathbf{u}}$	1174	12	$S_{32}(18) + S_8(16) + S_{16}(14) + S_{54}(13)$
δ(C-H)3'	A_{g}	1156	0	$S_{39}(31)+S_{37}(29)+S_{35}(15)+S_{9}(13)$
δ(C-H)3"	$\mathbf{B}_{\mathbf{u}}$	1156	2	$S_{40}(31)+S_{38}(29)+S_{36}(16)+S_{10}(12)$
$w(NH_2)'$	Ag	1123	0	$S_{53}(43)+S_{25}(25)+S_{23}(17)$
$W(NH_2)^{\prime\prime}$	$\mathbf{B}_{\mathbf{u}}$	1118	9	$S_{54}(46)+S_{26}(22)+S_{24}(17)$
δ(C-H)2'	Ag	1097	0	$S_{39}(22)+S_{11}(18)+S_{35}(16)+S_{7}(15)$
δ(C-H)2"	$\mathbf{B}_{\mathbf{u}}$	1096	10	$S_{40}(22)+S_{12}(18)+S_8(15)+S_{36}(15)$
v ring 6'	Ag	1049	0	$S_9(32)+S_{11}(22)+S_{35}(11)$
v ring 6"	$\mathbf{B}_{\mathbf{u}}$	1049	17	$S_{10}(33)+S_{12}(22)+S_{36}(12)$
γ(C-H)1'	A _u	1010	l	$S_{67}(60) + S_{73}(24) + S_{71}(17)$
γ(C-H)1"	B_g	1010	0	$S_{68}(60) + S_{74}(24) + S_{72}(17)$
ð ring 1'	A _g	1005	0	$S_{31}(52)+S_3(12)+S_1(10)$
ð ring 1"	\mathbf{B}_{u}	1005	13	$S_{32}(52)+S_4(12)+S_2(10)$
γ(C-H)2'	Au	975	2	$S_{69}(66) + S_{71}(31)$
γ(C-H)2"	\mathbf{B}_{g}	975	0	$S_{70}(66)+S_{72}(31)$
γ(C-H)4'	Au	917	4	$S_{73}(38)+S_{69}(27)+S_{67}(18)+S_{71}(16)$
γ(C-H)4"	B_{g}	917	0	$S_{74}(38)+S_{70}(27)+S_{68}(17)+S_{72}(16)$
$\gamma(NH_2)'$	A _u	845	65	$S_{77}(55)+S_{62}(45)$

TABLE S10. DFT(B3LYP)/6-311++G(d,p) calculated wavenumbers and intensities, and normal coordinate analysis for *Dimer 1* of picolinamide^a.

γ(C=O)"	B_{g}	825	0	$S_{76}(33)+S_{56}(25)+S_{72}(19)$
γ(C=O)'	A_u	824	53	$S_{75}(30)+S_{55}(26)+S_{71}(20)$
$\gamma(NH_2)$	$\mathbf{B}_{\mathbf{g}}$	802	0	$S_{78}(55)+S_{61}(45)$
δ ring 2''	$\tilde{\mathbf{B}_{u}}$	786	6	$S_{16}(23)+S_{46}(14)+S_{44}(13)+S_{6}(11)$
δ ring 2'	A_{g}	781	0	$S_{15}(24)+S_{45}(15)+S_{43}(14)+S_5(12)$
γ(C-H)3"	$\mathbf{B}_{\mathbf{g}}$	754	0	$S_{56}(26)+S_{72}(21)+S_{74}(21)+S_{68}(20)$
γ(C-H)3'	A_u	754	51	$S_{55}(30)+S_{73}(21)+S_{71}(19)+S_{67}(19)$
τ ring 1''	$\mathbf{B}_{\mathbf{g}}$	698	0	$S_{56}(49) + S_{76}(37)$
τ ring 1'	$\tilde{A_u}$	692	19	$S_{55}(45) + S_{75}(41)$
δ(C=O)''	B_u	653	24	$S_{44}(43)+S_{50}(34)$
δ(C=O)'	A_{g}	644	0	$S_{43}(54) + S_{49}(25)$
δ ring 3''	$\mathbf{B}_{\mathbf{u}}$	625	33	$S_{46}(52)+S_{44}(26)+S_{50}(13)$
δ ring 3'	A_{g}	621	0	$S_{45}(53)+S_{49}(24)+S_{43}(13)$
τ(C-N)'	A_u	576	302	$S_{61}(61) + S_{78}(39)$
τ(C-N)''	$\mathbf{B}_{\mathbf{g}}$	573	0	$S_{62}(54)+S_{77}(44)$
δ(C-C-N)"	$\tilde{\mathbf{B}_{u}}$	517	65	$S_{48}(43) + S_{42}(19)$
δ(C-C-N)'	A_{g}	499	0	$S_{47}(43) + S_{41}(22)$
τ ring 2"	$\mathbf{B}_{\mathbf{g}}$	445	0	S ₅₈ (84)
τ ring 2'	A_u	442	< 0.1	S ₅₇ (85)
τ ring 3'	A_u	411	3	S ₅₉ (81)
τ ring 3''	$\mathbf{B}_{\mathbf{g}}$	410	0	$S_{60}(81)$
v(C-C)'	$\tilde{A_g}$	406	0	$S_{15}(27)+S_{45}(17)+S_{47}(14)+S_{79}(13)+S_{49}(11)$
v(C-C)''	$\mathbf{B}_{\mathbf{u}}$	382	4	$S_{16}(34)+S_{46}(19)+S_{50}(16)+S_{48}(12)$
w(C-C)''	B_u	259	118	$S_{42}(45)+S_{80}(28)$
w(C-C)'	A_{g}	245	0	$S_{41}(53)+S_{81}(22)+S_{47}(17)$
τ(C-C)2"	$\mathbf{B}_{\mathbf{g}}$	170	0	$S_{66}(61) + S_{83}(18) + S_{60}(13)$
τ(C-C)2'	A_u	162	0.1	$S_{65}(61) + S_{59}(14)$
v _{AB} '	A_{g}	96	0	S ₇₉ (86)
τ(C-C)1'	A_u	92	7	$S_{63}(59) + S_{84}(38)$
δ _{AB}	A_{g}	87	0	$S_{81}(78)+S_{41}(10)$
τ(C-C)1"	$\mathbf{B}_{\mathbf{g}}$	79	0	S ₆₄ (85)
v _{AB} ''	$\mathbf{B}_{\mathbf{u}}$	54	3	$S_{80}(64) + S_{48}(19) + S_{42}(12)$
τ_{AB} ''	$\mathbf{B}_{\mathbf{g}}$	50	0	$S_{83}(82)+S_{66}(11)$
γ _{АВ}	A_u	35	0.5	$S_{84}(57)+S_{63}(32)$
τ_{AB} '	A_u	16	3	S ₈₂ (87)

^a Wavenumbers in cm⁻¹; intensities in km mol⁻¹. v, bond stretching; δ , bending; γ , rocking; w, wagging; τ , torsion. See Table S9 for definition of symmetry coordinates. ^b Scaled by 0.960 in the high wavenumbers region and by 0.988 in the low wavenumbers region (below 1800 cm⁻¹). ^c Only PED values greater than 10 % are given.

-

Annrovimata	Symmetry	DIMER 1 (C _{2h})		Class	Crystal
Description		Calculated Wavenumber	Intensity	(film, 10 K)	(KBr pellet, 25°C)
v(N-H)1''	B _u	3491.0	441.5	3448 / 3392	3417 / 3385
v(N-H)2"	$\mathbf{B}_{\mathbf{u}}^{u}$	3223.7	2265.3	3304 / 3256 / 3188	3271 / 3185
v(C-H)2"	B	3086.1	5.0	n.o.	3079
v(C-H)4"	$\mathbf{B}_{\mathbf{u}}^{u}$	3066.0	33.2	3068	3061
v(C-H)3"	$\mathbf{B}_{\mathbf{u}}^{u}$	3048.3	17.2	2012	3042
v(C-H)1"	$\mathbf{B}_{\mathbf{u}}$	3028.5	34.6	3013	3016
v(C=O)''	$\mathbf{B}_{\mathbf{u}}$	1718.5	704.4	1686	1662
v ring 3''	$\mathbf{B}_{\mathbf{u}}$	1608.7	23.5	1591	1587
δ(NH ₂)"	B	1602.8	212.8	1571	1568
v ring 5''	B	1591.1	79.2	~1583	1603 /~1583
v ring 2''	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1481.7	12.5	1471	1468
δ(C-H)4''	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1450.6	21.3	1446	1443
v(C-N)"	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1397.8	451.4	1397 / 1386	1406 / 1390
δ(C-H) 1"	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1302.1	8.2	1293	1284
v ring 1''	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1282.2	28.2	1254	1253
v ring 4''	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1174.2	12.4	1165	1165
δ(C-H)3"	$\mathbf{B}_{\mathrm{u}}^{\mathrm{u}}$	1156.3	1.9	1147	1143
w(NH ₂)"	$\mathbf{B}_{\mathbf{u}}$	1117.8	8.9	1097	1096 / 1084
δ(C-H)2"	B	1096.3	10.4	1224	1225
v ring 6''	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1049.4	16.9	1043	1043
γ(C-H)1'	A	1010.4	0.7	n.o.	n.o.
δ ring 1"	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	1004.8	13.0	998	996
γ(C-H)2'	A_{μ}	974.8	2.3	974	986
γ(C-H)4'	A	917.4	3.5	911	909
$\gamma(\rm NH_2)$	A	844.8	64.5	824	826
$\gamma(C=O)$	A_{u}	823.8	53.3	n.o.	770
δring 2"	$\mathbf{B}_{\mathbf{u}}^{\mathbf{u}}$	786.1	6.0	752	756
v(C-H)3'	A	753.6	50.6	685	694
τ ring 1'	A	692.3	19.0	644	649
$\delta(C=O)$	B _u	652.6	24.3	~779	796
δring 3"	$\mathbf{B}_{\mathbf{u}}$	624.8	32.8	615	610
δ(C-C-N)''	$\mathbf{B}_{\mathbf{u}}$	517.0	65.0	512	522
w(C-C)''	$\ddot{\mathbf{B}_u}$	259.3	118.0	~570	630

TABLE S11 - Observed wavenumbers for the neat PA solid in the glassy state resulting from fast deposition of the vapor of the compound onto the cryostat's cold substrate at 10 K and in the room temperature (25°C) crystalline phase (in KBr pellet).^a

^a Wavenumbers in cm⁻¹; intensities in km mol⁻¹. v, bond stretching; δ , bending; γ , rocking; τ , torsion; w, wagging.

Figure S1: Optimized structures of the conformers of nicotinamide. Two perspectives are provided, one with the viewpoint placed above the ring (left) and the other with the viewpoint along the major axis of the molecule.

Figure S2: Potential energy profiles calculated at the DFT-B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels for the $E \leftrightarrow Z$ conformational interconversion in nicotinamide.

Figure S3: B3LYP/6-311++G(d,p) calculated spectra for the *E* and *Z* conformers of nicotinamide. The spectra were simulated using Lorentzian functions with a halfbandwidth of 5 cm⁻¹, frequencies being scaled by 0.960 in the high frequency range and 0.988 below 1800 cm⁻¹. Ordinate scales in arbitrary units.