Dynamics, bonding and magnetic resonance properties of $\mathbf{Sc}_3\mathbf{C}_2@\mathbf{C}_{80}$ and its monoanion

Stefan Taubert^{*a,b*}, Michal Straka^{*a,c*}, Teemu O. Pennanen^{*a*}, Dage Sundholm^{*a*}, and Juha Vaara^{*a*}.

^aDepartment of Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland

^cInstitute of Org. Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2., 16610 Prague, Czech Republic

E-mail: b stefan.taubert@helsinki.fi, c straka@uochb.cas.cz

Table of Contents

Topic		Page		
Figure S1. Total displacement of the six-membered ring nearest to Sc1				
Figure S2. Correlated radial displacement of Sc1 and six-membered ring		S3		
Figures S4-S5. $^{13}\mathrm{C}$ NMR spectra of $\mathrm{Sc_3C_2@C_{80}}$ and $\mathrm{Sc_2C_2@C_{84}}$		S4-S5		
Table S1. Relative molecular energies in $kJ \text{ mol}^{-1}$ of the investigated structures				
and spin states of the Sc_3C_{82} molecule		S6		
Table S2 The basis set dependence of the relative molecular energies of				
Investigated isomers of $Sc_3C_2@C_{80}$		S6		
Table S3. $^{13}\mathrm{C}$ NMR chemical shifts for cage carbon atoms in $[\mathrm{Sc}_3\mathrm{C}_2@\mathrm{C}_{80}]^-$		S6		
Table S4. ⁴⁵ Sc nuclear magnetic shieldings				
Table S5. Calculated principal and isotropic g values for $Sc_3C_2@C_{80}$.				
Cartesian coordinates of the optimized structures of				
$Sc_3C_2@C_{80}$, isomer 1a		S8		
$Sc_3C_2@C_{80}$, isomer 2a		S9		
$Sc_3C_2@C_{80}$, isomer 1a anion		S11		
$Sc_3C_2@C_{80}$, isomer 2a anion		S12		
$Sc_3C_2@C_{80}$, isomer $1a_{TS}$		S14		
$ m Sc_3@C_{82}$		S15		
$Sc_3C_2@C_{80}$, distorted C_1 -symmetric isomer 1a		S17		
$Sc_3C_2@C_{80}$, distorted C_1 -symmetric isomer 2a		S18		
$Sc_3C_2@C_{80}$, distorted C_1 -symmetric isomer 1a anion		S20		
$Sc_3C_2@C_{80}$, distorted C_1 -symmetric isomer 2a anion		S22		
$ m Sc_2C_2@C_{84}$		S23		
$Sc_2C_2@C_{84}$, anion		S25		

(b)

Figure S1: Total displacement from the original positions in the static 1a structure (in Å) of the center of mass of the six-membered ring closest to Sc1.

(a)

⁽b)

Figure S2: Displacement from the original positions in the static 1a structure (in Å) of the center of mass of the sixmembered ring closest to Sc1, as well as of Sc1. The motion is directed towards the cage interior (negative direction on the y-axis). This plot illustrates the breathing-like dynamics of the cage, and it indicates a coupling between the Sc atoms and the cage. Although the amplitude of the motion of the scandium atom is larger than that of the cage, the phase is qualitatively the same throughout the trajectory.

Figure S3: Calculated ¹³C NMR spectrum of the endohedral carbon atoms in the $[Sc_3C_2@C_{80}]^-$ anion obtained with the indicated functionals. The def2-TZVP basis set is used. The x-scale is the chemical shift (in ppm) relative to TMS.

Figure S4: Calculated ¹³C NMR spectrum of the endohedral carbon atoms in the $Sc_2C_2@C_{84}$ molecule obtained at the given computational levels. The x-scale is the chemical shift (in ppm) relative to TMS.

Table S1: Relative molecular energies in kJ mol⁻¹ of the investigated structures and spin states of the Sc_3C_{82} molecule. The energies are given relative to **1a** and all structures are optimized at the BP86/def2-TZVP.

0	0	1			
Molecule	Isomer	Singlet (anion)	Doublet	Quartet	Sextet
$Sc_3@C_{82}{}^a$	C_{3v}		147.2	142.3	204.5
$Sc_3C_2@C_{80}$	1a	-301.1	0.0	127.2	290.4
	2a	-316.9	3.2	185.6	329.8
	$\mathbf{1a}_{\mathrm{TS}}$		14.1		
	1a'	-303.3	0.1		
	2a'	-320.6	0.9		
$a \alpha + (\alpha)$			$\alpha/1$ (α $-\pi$ π π $-\pi$ 1 1		

^a Structure (C_{3v}) optimized for the quartet state at the RI-BP86/def2-TZVP level.

Table S2: The energies in kJ mol⁻¹ of the different isomers of the doublet $Sc_3C_2@C_{80}$ with different basis sets employed together with the BP86 DFT functional. The energies are given relative to **1a** and all structures are optimized at the BP86/def2-SVP level.

Single-point	1a	2 a	1a'	2a'
def2-SVP	0.0	-4.2	-5.0	-0.1
$ZPVE^{a}$	0.00	0.36	0.67	-2.62
def2-SVP/def2-	0.0	-2.3		
TZVP^{b}				
def2-TZVP	0.0	1.2	-10.5	-9.7

 a Zero-point vibrational corrections have been calculated at the RI-BP86/def2-SVP level. The corrections are given relative to the ZPVE of ${\bf 1a}.$

^b With the def2-TZVP basis set for the endohedral atoms and the def2-SVP basis set for the cage atoms.

	Isome	er 1a	Isome	er 2a
Level	Peak 1	Peak 2	Peak 1	Peak 2
BP86	149.4	138.2	151.1	141.4
$BP86^{c}$	145.6	146.2	149.9	140.1
BLYP	150.3	139.1	151.0	141.4
B3LYP	153.3	144.2	154.6	146.3
BHLYP	156.4	150.4	157.7	151.2
$\operatorname{Exp.}^d$	145.6	138.9		

Table S3: Calculated^{*a*} ¹³C NMR chemical shifts (in ppm with respect to TMS^{*b*}) for cage carbon atoms in $[Sc_3C_2@C_{80}]^-$.

^{*a*} Calculated with the specified functional and the def2-TZVP basis set. The shifts are averaged to correspond to the $I_{\rm h}$ cage.

 b The 13 C shielding constants of TMS are 182.30 ppm (BP86); 178.48 ppm (BLYP); 181.84 (B3LYP); 186.00 (BHLYP). The basis set is def2-TZVP.

^c Isomers 1a' and 2a' at the lower C_1 symmetry.

 d Ref. 7. The isomers are experimentally indistinguishable.

Table S4: Calculated 45 Sc NMR chemical shielding constants for both the closed-shell anion and the open-shell neutral form of isomers **1a** and **2a**

Structure	Atom	NMR^{a}	pNMR^{b}
1a	Sc1	523.5	887
	$\operatorname{Sc2}$	502.9	1688
	Sc3	502.9	1686
2a	$\operatorname{Sc1}$	414.1	292
	Sc2	300.2	1143
	Sc3	300.2	1139
$\mathbf{1a}_{TS}$	$\operatorname{Sc1}$	420.0	929
	Sc2	413.2	1490
	Sc3	413.4	1473
1a'	$\operatorname{Sc1}$	467.5	
	Sc2	540.5	
	Sc3	533.4	
2a'	$\operatorname{Sc1}$	422.9	
	Sc2	310.2	
	Sc3	291.9	

 $\overline{^a}$ At the RI-BP86/def2-TZVP level.

^b At the BP86 level with EPR-II basis on C and (15s11p6d)/[9s7p4d] basis on Sc. The value includes the contribution from SO-coupling. Note that no scalar relativistic effects are taken into account.

Table S5: Calculated^{*a*} principal and isotropic g values for Sc₃C₂@C₈₀.

		1 1	1 0 01	L 00	
Structure	$g_{ m iso}$	g_{11}	g_{22}	g_{33}	
1a	1.99923	1.99567	1.99976	2.00226	
2a	1.99459	1.99283	1.99475	1.99619	
$\mathbf{1a}_{TS}$	1.99845	1.99668	1.99793	2.00075	
$Exp.^{b} Sc_{3}@C_{82}$	1.9987				
$Exp.^{c} Sc_{3}C_{2}@C_{80}$	1.99835				

a At the BP86 level with EPR-II basis on C and (15s11p6d)/[9s7p4d] basis on Sc.

 b Ref. 6 of the article.

 c Ref. 4 of the article.

Ene	ergy = -5408.52	1373082 Hartree	
С	4.1577582	-0.1385263	-0.0236560
С	4.0444752	0.5839164	-1.2890400
С	3.5121084	-0.0902163	-2.5000322
С	3.0751730	-1.4923077	-2.4290608
С	3.2941366	-2.2065454	-1.1939236
С	3.8246127	-1.5380683	-0.0187233
С	3.4412531	1.9147387	-1.2317009
С	3.1404234	2.6217834	-0.0028086
С	3.4295175	1.9448404	1.2209549
С	3.8889925	0.5732732	1.2005223
С	3.2688549	-2.1904100	1.1474666
С	2.9931575	-1.4591938	2.3382523
С	3.3411633	-0.0813519	2.3590227
Ċ	2.4064774	-3.2541045	-0.7370202
Č	2.4005937	-3.2420207	0.6977589
Ċ	2.5855703	0.8561051	-3.1244582
Ċ	2.5811759	2.0844704	-2.3681054
Č	2.6078463	2.1285107	2.3776496
Č	2.5417259	0.8719065	3.0966378
Č	1 8835132	-1 8702817	-3 1380144
C	1.0692503	-0.9186612	-3 8661236
C	1.3784330	0.4677918	-3 8261685
C	0.2885575	1.3898548	-3 8700934
C	0.3232969	26307499	-3 1408830
C	1.4576705	2.0001100 2.9885595	-2 3538305
C	1.2431109	37511893	-1.1749167
C	2.0721475	35592708	-0.0120360
C	1.2452896	37470444	1.1553506
C	1.2102000 1.4773257	2 9949511	2.3384465
Č	0.3370829	2.6043842	3.1253617
C	0.2972182	1 4120585	3,9529598
Č	1.4207952	0.4860729	3.9168123
Č	1.0989938	-0.9318780	3.9539811
Č	1.8611567	-1.8529228	3.1265161
Č	0.9860775	-2.8871287	2.6542148
Č	1.2256067	-3.5933949	1.4306318
Č	1.0062532	-2.9325515	-2.6945566
Č	1.2320745	-3.6195487	-1.4664550
Č	0.0911438	-4.0634778	-0.7327061
Č	0.0898123	-4.0463774	0.7064847
Č	-4.1577582	0.1385263	-0.0236560
Č	-3.8889925	-0.5732732	1.2005223
Č	-3.3411633	0.0813519	2.3590227
Č	-2.9931575	1.4591938	2.3382523
Č	-3.2688549	2.1904100	1.1474666
Č	-3.8246127	1.5380683	-0.0187233
Č	-3.4295175	-1.9448404	1.2209549
Č	-3.1404234	-2.6217834	-0.0028086
$\tilde{\mathbf{C}}$	-3.4412531	-1.9147387	-1.2317009
$\tilde{\mathbf{C}}$	-4.0444752	-0.5839164	-1.2890400
$\tilde{\mathbf{C}}$	-3.2941366	2.2065454	-1.1939236
$\tilde{\mathbf{C}}$	-3.0751730	1.4923077	-2.4290608
$\tilde{\mathbf{C}}$	-3.5121084	0.0902163	-2.5000322
$\tilde{\mathbf{C}}$	-2.4005937	3.2420207	0.6977589
Č	-2.4064774	3.2541045	-0.7370202

\mathbf{C}	-2.5417259	-0.8719065	3.0966378
\mathbf{C}	-2.6078463	-2.1285107	2.3776496
С	-2.5811759	-2.0844704	-2.3681054
С	-2.5855703	-0.8561051	-3.1244582
\mathbf{C}	-1.8611567	1.8529228	3.1265161
\mathbf{C}	-1.0989938	0.9318780	3.9539811
\mathbf{C}	-1.4207952	-0.4860729	3.9168123
\mathbf{C}	-0.2972182	-1.4120585	3.9529598
\mathbf{C}	-0.3370829	-2.6043842	3.1253617
\mathbf{C}	-1.4773257	-2.9949511	2.3384465
С	-1.2452896	-3.7470444	1.1553506
\mathbf{C}	-2.0721475	-3.5592708	-0.0120360
\mathbf{C}	-1.2431109	-3.7511893	-1.1749167
\mathbf{C}	-1.4576705	-2.9885595	-2.3538305
\mathbf{C}	-0.3232969	-2.6307499	-3.1408830
\mathbf{C}	-0.2885575	-1.3898548	-3.8700934
\mathbf{C}	-1.3784330	-0.4677918	-3.8261685
С	-1.0692503	0.9186612	-3.8661236
\mathbf{C}	-1.8835132	1.8702817	-3.1380144
\mathbf{C}	-1.0062532	2.9325515	-2.6945566
\mathbf{C}	-1.2320745	3.6195487	-1.4664550
\mathbf{C}	-0.9860775	2.8871287	2.6542148
\mathbf{C}	-1.2256067	3.5933949	1.4306318
\mathbf{C}	-0.0898123	4.0463774	0.7064847
\mathbf{C}	-0.0911438	4.0634778	-0.7327061
С	0.0120664	0.6552198	-0.0472278
\mathbf{C}	-0.0120664	-0.6552198	-0.0472278
\mathbf{Sc}	0.0000000	0.0000000	2.1672489
\mathbf{Sc}	1.9394220	-0.0555392	-0.9653948
Sc	-1.9394220	0.0555392	-0.9653948

Cartesian coordinates for the neutral 2a isomer of $Sc_3C_2@C_{80}$ (in Å).

Energy = -5408.520150710 Hartree					
С	0.000000	0.000000	0.000000		
С	1.165967	0.487988	0.694535		
С	0.000000	-1.246817	-0.743583		
С	1.219991	-1.979003	-0.799826		
С	2.377045	-1.533068	-0.062503		
С	2.358047	-0.340774	0.720221		
С	-1.165967	0.487988	0.694535		
С	0.743287	1.346453	1.807694		
С	-1.219991	-1.979003	-0.799826		
С	1.219991	-3.421437	-0.799826		
С	3.092091	-2.700220	0.390926		
С	-0.743287	1.346453	1.807694		
С	3.131676	-0.321513	1.918152		
С	2.377045	-3.867372	-0.062503		
С	-2.358047	-0.340774	0.720221		
С	-2.377045	-1.533068	-0.062503		
С	-1.219991	-3.421437	-0.799826		
С	1.475737	1.197657	3.072709		
С	0.000000	-4.153623	-0.743583		
С	2.669035	0.404917	3.081133		
С	3.853547	-1.476496	2.364905		
С	3.799501	-2.700220	1.626466		
\mathbf{C}	-1.475737	1.197657	3.072709		
С	-3.092091	-2.700220	0.390926		

\mathbf{C}	-2.377045	-3.867372	-0.062503
\mathbf{C}	-3.131676	-0.321513	1.918152
Č	2 358047	-5.059666	0 720221
C	2.000011	-0.317787	4 252700
C	0.121014 0.723527	1 178700	4.202100
C	0.120021	1.170709	4.307009
C	3.838292	-1.4/8/28	3.803751
C	0.000000	-5.400440	0.000000
С	-2.669035	0.404917	3.081133
\mathbf{C}	3.853547	-3.923944	2.364905
\mathbf{C}	-0.723527	1.178709	4.307009
\mathbf{C}	1.165967	-5.888428	0.694535
\mathbf{C}	3.131676	-5.078927	1.918152
\mathbf{C}	-3.853547	-1.476496	2.364905
Č	-3 799501	-2 700220	1 626466
$\tilde{\mathbf{C}}$	-2.358047	-5.059666	0 720221
C	-2.330047 1 165067	-5.055000 E 999409	0.720221
C	-1.105907	-0.000420	0.094555
C	1.161046	0.440606	5.468050
С	2.347223	-0.340290	5.445068
С	3.782215	-2.700220	4.535209
\mathbf{C}	3.838252	-3.921712	3.803751
\mathbf{C}	-3.121314	-0.317787	4.252799
\mathbf{C}	-1.161046	0.440606	5.468050
С	0.743287	-6.746893	1.807694
\mathbf{C}	-3.838252	-1.478728	3.803751
Č	2 669035	-5 805357	3 081133
C	0.000000	0.010403	6 200826
C	0.000000	2 022044	0.200820
C	-3.833347	-3.923944	2.304903
C	-0.743287	-6.746893	1.807694
C	-3.131676	-5.078927	1.918152
С	-2.347223	-0.340290	5.445068
\mathbf{C}	3.121314	-5.082653	4.252799
\mathbf{C}	2.348864	-1.539056	6.244743
\mathbf{C}	3.037334	-2.700220	5.763206
\mathbf{C}	1.475737	-6.598097	3.072709
С	-3.782215	-2.700220	4.535209
\mathbf{C}	-3.838252	-3.921712	3.803751
$\tilde{\mathbf{C}}$	-2 669035	-5 805357	3 081133
\tilde{c}	0.000000	1 101586	7 053314
C	1.475727	-1.191580	2 079700
C	-1.470707	-0.398097	5.072709
C	1.242734	-1.957949	7.094135
С	2.348864	-3.861384	6.244743
С	2.347223	-5.060151	5.445068
С	-2.348864	-1.539056	6.244743
\mathbf{C}	-3.121314	-5.082653	4.252799
\mathbf{C}	0.723527	-6.579149	4.307009
\mathbf{C}	-3.037334	-2.700220	5.763206
С	-1.242734	-1.957949	7.094135
Č	1242734	-3 442491	7 094135
C	-0.723527	-6.5791/10	4 307009
C	1 161046	5 9/10/6	4.307003 5.469050
C	1.101040	-0.041040	5.408050
C	-2.347223	-5.060151	5.445068
C	-2.348864	-3.861384	6.244743
C	-1.242734	-3.442491	7.094135
С	0.000000	-4.208854	7.053314
С	-1.161046	-5.841046	5.468050
С	0.000000	-5.381037	6.200826
С	0.000000	-2.700220	3.239197
С	0.000000	-2.700220	1.946083
Sc	0.000000	-0.611555	2.490479
Sc	0.000000	-4 788885	2 490470
Sc	0.000000	2 700220	5 220419
SC	0.000000	-2.100220	0.002401

85Energy = -5408.636048460 Hartree С 1.2461788 -3.76180381.1730790 -3.5661931 \mathbf{C} 2.07401940.0111467С 1.4594606 -2.99328652.3516391С 2.5826938-2.09080332.3671654С 3.4422506-1.91930461.2296136 С 3.1410838-2.62216110.0013122С -0.0907222-4.07175980.7310526 С 1.2465776 -3.7495444-1.1556734 \mathbf{C} 0.3234720 -2.63447873.1379713 С 2.5833678-0.85910573.1202942 \mathbf{C} 4.0339982 -0.58408041.2822885С -0.0888223-4.0530271-0.7082062 \mathbf{C} 3.4370022 -1.9458558-1.2242228С 3.5012049 0.08853752.4891246 \mathbf{C} -1.2351376-3.63277031.4655540С -1.0068488-2.93802392.6930017 С 0.2884326-1.39177133.8654968 С 1.4791423 -2.9944430-2.3374907С 1.3779512 -0.46805373.8201503 С 2.6161630-2.1297862-2.3807696С -0.5728785-1.20546973.8966846 С 4.15423510.1400831 0.0202542 С -1.2279024-3.6029474-1.4331286С -1.8815722-1.87504283.1365521С -1.0700641-0.92182953.8623909 С -2.4074868-3.26518700.7335452С 3.06507141.4889689 2.4161478 \mathbf{C} 2.5551265-0.8736456-3.0983337 \mathbf{C} 0.3352609 -2.6076526-3.1207745 \mathbf{C} 3.35498530.0813737 -2.3669297С 1.0700641 0.92182953.8623909 \mathbf{C} -3.2535230-2.4039744-0.7022035С 3.8218782 1.54472030.0152401С -0.9902215-2.8958369-2.6562301С 1.8815722 1.8750428 3.1365521 \mathbf{C} 3.2923571 2.21152611.1858828 С -3.2923571-2.21152611.1858828 С -3.0650714-1.48896892.4161478С -1.37795120.46805373.8201503С 3.8654968-0.28843261.3917713 С 0.2945091 -1.4087028-3.9330304С 1.4191213 -0.4847839-3.8965912 \mathbf{C} 1.46600343.0024075 -2.34486512.1976580 \mathbf{C} 3.2719644 -1.1520517С -3.2719644-2.1976580-1.1520517С -1.8688799-1.8606891-3.1266419С 1.0068488 2.9380239 2.6930017 С -3.8218782-1.54472030.0152401С 2.4074868 0.7335452 3.2651870 С -1.0976382-0.9308694-3.9344599 \mathbf{C} -3.5012049-0.08853752.4891246 С -0.32347202.63447873.1379713 С -2.58336780.85910573.1202942 \mathbf{C} -3.0024075-1.4660034-2.3448651 \mathbf{C} 3.2535230-0.70220352.4039744 С 1.0976382 0.9308694-3.9344599

С	1.8688799	1.8606891	-3.1266419
\mathbf{C}	1.2351376	3.6327703	1.4655540
\mathbf{C}	-4.1542351	-0.1400831	0.0202542
\mathbf{C}	-4.0339982	0.5840804	1.2822885
\mathbf{C}	-2.5826938	2.0908033	2.3671654
\mathbf{C}	-1.4191213	0.4847839	-3.8965912
\mathbf{C}	-1.4594606	2.9932865	2.3516391
\mathbf{C}	-0.2945091	1.4087028	-3.9330304
\mathbf{C}	0.9902215	2.8958369	-2.6562301
\mathbf{C}	1.2279024	3.6029474	-1.4331286
\mathbf{C}	-3.3549853	-0.0813737	-2.3669297
\mathbf{C}	-3.4422506	1.9193046	1.2296136
\mathbf{C}	0.0907222	4.0717598	0.7310526
\mathbf{C}	-3.8966846	0.5728785	-1.2054697
\mathbf{C}	-2.5551265	0.8736456	-3.0983337
\mathbf{C}	-0.3352609	2.6076526	-3.1207745
\mathbf{C}	-1.2461788	3.7618038	1.1730790
\mathbf{C}	0.0888223	4.0530271	-0.7082062
\mathbf{C}	-3.1410838	2.6221611	0.0013122
\mathbf{C}	-3.4370022	1.9458558	-1.2242228
\mathbf{C}	-2.6161630	2.1297862	-2.3807696
\mathbf{C}	-1.4791423	2.9944430	-2.3374907
\mathbf{C}	-2.0740194	3.5661931	0.0111467
\mathbf{C}	-1.2465776	3.7495444	-1.1556734
\mathbf{Sc}	0.0000000	0.0000000	-2.1121601
\mathbf{Sc}	1.9050383	0.0433133	0.9475671
Sc	-1.9050383	-0.0433133	0.9475671
С	-0.0027412	0.6709166	0.0743178
\mathbf{C}	0.0027412	-0.6709166	0.0743178

Cartesian coordinates for the monoanionic 2a isomer of $Sc_3C_2@C_{80}$ (in Å).

Energy = -5408.642091246 Hartree					
С	0.000000	0.000000	0.000000		
С	1.165938	0.483255	0.699826		
С	0.000000	-1.248315	-0.741416		
С	1.222766	-1.979966	-0.798897		
С	2.378879	-1.534839	-0.060045		
С	2.356738	-0.343650	0.728640		
С	-1.165938	0.483255	0.699826		
С	0.739981	1.323600	1.823981		
С	-1.222766	-1.979966	-0.798897		
С	1.222766	-3.425586	-0.798897		
С	3.091843	-2.702776	0.396951		
С	-0.739981	1.323600	1.823981		
С	3.129886	-0.322340	1.929071		
\mathbf{C}	2.378879	-3.870714	-0.060045		
С	-2.356738	-0.343650	0.728640		
С	-2.378879	-1.534839	-0.060045		
\mathbf{C}	-1.222766	-3.425586	-0.798897		
\mathbf{C}	1.470639	1.184978	3.087410		
\mathbf{C}	0.000000	-4.157238	-0.741416		
\mathbf{C}	2.671317	0.404053	3.094202		
\mathbf{C}	3.850074	-1.479543	2.376937		
\mathbf{C}	3.795143	-2.702776	1.636734		
\mathbf{C}	-1.470639	1.184978	3.087410		
\mathbf{C}	-3.091843	-2.702776	0.396951		
\mathbf{C}	-2.378879	-3.870714	-0.060045		
\mathbf{C}	-3.129886	-0.322340	1.929071		

\mathbf{C}	2.356738	-5.061903	0.728640
\mathbf{C}	3.122543	-0.317617	4.267113
С	0.722683	1.177524	4.323745
Ċ	3.837683	-1.480947	3.816563
Č	0.000000	-5 405553	0.000000
$\tilde{\mathbf{C}}$	-2 671317	0.404053	3 094202
C	3 850074	3 026010	2 376037
C	0.700692	-3.920010 1 177594	4 202745
C	-0.722000	1.177024	4.323740
C	1.105938	-0.888807	0.099820
C	3.129886	-5.083213	1.929071
C	-3.850074	-1.479543	2.376937
C	-3.795143	-2.702776	1.636734
С	-2.356738	-5.061903	0.728640
С	-1.165938	-5.888807	0.699826
\mathbf{C}	1.163681	0.446354	5.490113
\mathbf{C}	2.349590	-0.336797	5.463217
\mathbf{C}	3.782795	-2.702776	4.548455
\mathbf{C}	3.837683	-3.924605	3.816563
\mathbf{C}	-3.122543	-0.317617	4.267113
С	-1.163681	0.446354	5.490113
\mathbf{C}	0.739981	-6.729153	1.823981
Č	-3 837683	-1 480947	3 816563
$\tilde{\mathbf{C}}$	2.671317	-5 809606	3 094202
$\tilde{\mathbf{C}}$	0.000000	-0.011022	6 222588
C	3 850074	2 026010	0.222000
C	-3.830074	-3.920010 6 720152	2.070907
C	-0.759961	-0.729100	1.023901
C	-3.129880	-5.083213	1.929071
C	-2.349590	-0.336797	5.463217
C	3.122543	-5.087936	4.267113
C	2.353003	-1.539542	6.259077
С	3.043414	-2.702776	5.779939
С	1.470639	-6.590531	3.087410
\mathbf{C}	-3.782795	-2.702776	4.548455
\mathbf{C}	-3.837683	-3.924605	3.816563
\mathbf{C}	-2.671317	-5.809606	3.094202
\mathbf{C}	0.000000	-1.194702	7.059327
\mathbf{C}	-1.470639	-6.590531	3.087410
\mathbf{C}	1.240979	-1.960649	7.098117
С	2.353003	-3.866011	6.259077
\mathbf{C}	2.349590	-5.068756	5.463217
Č	-2.353003	-1.539542	6.259077
$\tilde{\mathbf{C}}$	-3.122543	-5.087936	4 267113
$\tilde{\mathbf{C}}$	0.122613 0.722683	-6 583077	4 323745
C	3 043414	2 702776	5 770030
C	-3.043414 1 240070	-2.102110	7 009117
C	-1.240979	-1.900049	7.090117
C	1.240979	-3.444904	1.098117
C	-0.722683	-6.583077	4.323745
C	1.163681	-5.851907	5.490113
C	-2.349590	-5.068756	5.463217
С	-2.353003	-3.866011	6.259077
С	-1.240979	-3.444904	7.098117
С	0.000000	-4.210851	7.059327
С	-1.163681	-5.851907	5.490113
С	0.000000	-5.394530	6.222588
С	0.000000	-2.702776	3.259977
С	0.000000	-2.702776	1.928201
Sc	0.000000	-4.715718	2.490892
Sc	0.000000	-2.702776	5.293784
Sc	0.000000	-0.689835	2.490892

$\begin{array}{l} \text{Cartesian coordinates for the transition state bf $1a_{TS}$ of the neutral 1a isomer of $Sc_3C_2@C_{80}$ (in Å). \\ & \text{The transition state has only one imaginary frequency.} \end{array}$

85				
Ene	rgy = -5408.4	515995012 Hartree		
С	0.000000	0.000000	0.000000	
С	0.778183	0.938491	-0.766665	
С	0.877760	0.906283	-2.208417	
С	0.005729	-0.025107	-2.905250	
С	-0.729082	-0.997489	-2.150057	
С	-0.715574	-0.996751	-0.706876	
С	0.936409	2.295923	-0.327736	
С	0.345340	2.767524	0.897682	
С	-0.373720	1.818134	1.692071	
Ċ	-0.549969	0.467507	1.236906	
Ċ	-1.997154	-1.462092	-0.239115	
Č	-2.578035	-0.941895	0.953006	
Č	-1 812898	-0.002421	1.725746	
C	-2.030651	-1451347	-2 569290	
C	-2.811043	-1 739093	-1.392467	
C	1.137101	2.284075	-2 690887	
C	1.157151	2.204070	-2.090001	
C	1.110010	2.135210 2.184020	-1.407770	
C	-1.494024 2.411805	2.184029	2.541080 2.555220	
C	-2.411605	1.029010 0.429451	2.000029	
C	-0.390417	0.430401 1 011104	-4.110102	
C	-0.410251	1.011124	-4.077200	
C	0.423233	2.700302	-3.882110	
C	-0.129475	4.102383	-3.827136	
C	-0.025843	4.961256	-2.654780	
С	0.551056	4.468849	-1.449015	
C	0.018323	4.959100	-0.210989	
C	-0.068252	4.120647	0.951886	
C	-1.253781	4.487437	1.701687	
C	-1.981812	3.553896	2.519809	
С	-3.426311	3.729351	2.583291	
С	-4.345293	2.573385	2.599306	
С	-3.856244	1.202171	2.550425	
С	-4.609018	0.269540	1.753495	
С	-3.995528	-0.807893	1.006905	
С	-4.808370	-1.093301	-0.138628	
С	-4.219856	-1.520376	-1.369840	
С	-1.891872	-0.012170	-4.533934	
С	-2.647636	-0.933832	-3.743706	
С	-4.072988	-0.799222	-3.751562	
\mathbf{C}	-4.851016	-1.097186	-2.584197	
С	-6.013792	4.785260	-2.809386	
С	-6.862292	3.852876	-2.085668	
С	-6.716543	3.819553	-0.647930	
С	-5.914367	4.757115	0.093486	
Ċ	-5.222484	5.754976	-0.634062	
Ċ	-5.255130	5.757198	-2.077135	
Č	-7.136933	2.475181	-2.560412	
č	-6.463893	1.993351	-3.775778	
$\tilde{\mathbf{C}}$	-5.652366	2,949768	-4.496175	
$\tilde{\mathbf{C}}$	$-5\ 457037$	4 322212	-4 041389	
\tilde{c}	-3 967391	6 911980	-2 536601	
$\tilde{\mathbf{C}}$	-3 387857	5 60/082	-3 730228	
$\widetilde{\mathbf{C}}$	-4.168570	4.772569	-4.496466	
~		1.112000	1.100100	

С	-3.926722	6.219570	-0.206456
С	-3.149959	6.498131	-1.384845
С	-6.859783	2.462079	-0.204890
С	-7.078811	1.623843	-1.359228
С	-4.448061	2.576292	-5.212898
С	-3.555709	3.701461	-5.230842
С	-5.322427	4.286427	1.310180
С	-5.485927	2.937087	1.774071
С	-6.231475	1.988583	1.000637
С	-5.818971	0.635226	1.041825
С	-5.941537	-0.201885	-0.118327
С	-6.511901	0.290122	-1.339047
С	-5.974177	-0.201813	-2.562559
С	-5.907981	0.657846	-3.737543
С	-4.708503	0.281001	-4.455819
С	-3.944361	1.241545	-5.181349
С	-2.527462	1.059466	-5.248370
С	-1.635250	2.184874	-5.257233
С	-2.137284	3.519398	-5.208799
С	-1.350671	4.479504	-4.507336
С	-1.963577	5.559478	-3.783157
С	-1.149151	5.856804	-2.640656
С	-1.741214	6.279515	-1.406874
С	-4.046959	4.757594	1.763039
С	-3.307588	5.699695	0.966472
С	-1.889436	5.567074	0.975638
С	-1.113567	5.852267	-0.194902
С	-2.939541	3.042769	-1.437989
С	-3.022713	1.725315	-1.426912
Sc	-2.972182	2.395076	0.782919
Sc	-0.994491	2.279319	-2.180132
\mathbf{Sc}	-4.987272	2.482646	-2.129812

 $\label{eq:cartesian} \begin{array}{l} \text{Cartesian coordinates of $Sc_3@C_{82}$, quartet state. The energies reported in Table $S1$ for doublet and sextet are calculated for the quartet structure.} \end{array}$

85			
65 E	nerøv= See	Table S1	
C	2.745219	3.272188	-0.371030
Č	3.094469	2.399416	-1.484370
C	2.217936	2.386733	-2.629091
С	3.774783	1.164437	-1.190544
С	4.018212	0.713283	0.172499
С	3.511829	1.450362	1.292378
С	2.946190	2.751875	0.982225
С	3.623476	0.000000	-2.027986
С	2.740942	0.000000	-3.167920
С	2.060444	1.223650	-3.472036
С	2.060444	-1.223650	-3.472036
С	3.774783	-1.164437	-1.190544
\mathbf{C}	2.745219	-3.272188	-0.371030
С	3.094469	-2.399416	-1.484370
\mathbf{C}	2.217936	-2.386733	-2.629091
С	2.184180	1.414176	3.400128
С	3.080222	0.737127	2.498603
С	3.080222	-0.737127	2.498603
\mathbf{C}	3.511829	-1.450362	1.292378
С	4.018212	-0.713283	0.172499
С	2.946190	-2.751875	0.982225

С	0.708898	-1.227848	-3.982393
С	0.000000	0.000000	-4.210499
С	0.708898	1.227848	-3.982393
С	-1.417797	0.000000	-3.982393
С	0.029490	-2.396222	-3.472036
С	-1.811738	-3.138022	-2.027986
Ċ	-1.370471	-2.373725	-3.167920
Č	-2.089934	-1.172572	-3 472036
C	1 461189	-4 013523	-0.371030
C	0.530720	-3.879597	-1.484370
C	0.058003	3 11/155	2 620001
C	0.938003	3 851976	-2.029091 1 100544
C	-0.878900	-5.051270 1 172572	2 472026
C	-2.009934	1.172072	-3.472030
C	-1.370471	2.313120	-5.107920
C	0.029490	2.390222	-3.472030
C	-1.811738	3.138022	-2.027986
C	-3.175939	0.727422	-2.629091
C	-4.206407	0.741335	-0.371030
C	-3.625189	1.480181	-1.484370
С	-2.895823	2.686839	-1.190544
С	-2.895823	-2.686839	-1.190544
С	-3.625189	-1.480181	-1.484370
С	-3.175939	-0.727422	-2.629091
С	-4.206407	-0.741335	-0.371030
С	-0.878960	3.851276	-1.190544
С	0.530720	3.879597	-1.484370
С	0.958003	3.114155	-2.629091
\mathbf{C}	1.461189	4.013523	-0.371030
С	-1.391385	3.836515	0.172499
С	-0.499864	3.766514	1.292378
С	0.910098	3.927413	0.982225
С	1.523796	2.639292	3.003035
С	1.884563	3.264159	1.806488
С	-2.316802	1.184468	3.400128
\mathbf{C}	-2.178481	2.298987	2.498603
С	-0.901741	3.036114	2.498603
С	0.132622	2.598643	3.400128
Ċ	-2.626827	3.123233	0.172499
Č	-3.856288	1.175538	0.982225
Č	-3.011965	2.316152	1.292378
Č	-1 231146	-0.726311	4 232933
Č	-1 231146	0.726311	4 232933
C	-0.013431	1.420311	4 232033
C	-0.013431	-1.429359	4.202000
C	3 760196	0.000000	1 806488
C	-3.103120	1 184468	2 400128
C	2.017502	-1.184408	2.002025
C	-3.047392	0.000000	0.179400
C	-2.020827	-0.120200	0.172499
C	0.132022	-2.098040	3.400128
C	-0.901741	-3.030114	2.498003
C	-2.178481	-2.298987	2.498603
C	-3.011965	-2.316152	1.292378
C	-3.856288	-1.175538	0.982225
C	1.523796	-2.639292	3.003035
C	1.884563	-3.264159	1.806488
C	0.910098	-3.927413	0.982225
C	-0.499864	-3.766514	1.292378
С	-1.391385	-3.836515	0.172499
С	1.244577	0.703048	4.232933
С	1.244577	-0.703048	4.232933
С	2.184180	-1.414176	3.400128
Sc	-2.094745	0.000000	-0.291519
Sc	1.047373	-1.814102	-0.291519
\mathbf{Sc}	1.047373	1.814102	-0.291519

Cartesian coordinates of the distorted C₁-symmetric structure of the neutral doublet 1a isomer $\mathbf{Sc}_3\mathbf{C}_2@\mathbf{C}_{80}$

85			
	Energy = See	Table S1	
С	4.1589651	-0.1553099	-0.2113666
С	3.9917104	0.5996067	-1.4532020
С	3.3937566	-0.0452785	-2.6492991
С	2.9563460	-1.4463476	-2.5925259
С	3.2321698	-2.1932067	-1.3880694
Č	3.8194486	-1.5550122	-0.2225949
Č	3.3931826	1.9301442	-1.3381659
Č	3.1478218	2.6096288	-0.0814711
Ċ	3.4866009	1.9016809	1.1113372
Č	3.9357011	0.5278464	1.0380061
Č	3.3109484	-2.2327231	0.9512537
Č	3 0881018	-15306279	2 1711356
C	34354307	-0 1521393	2 2048615
C	2 3598891	-3 2472692	-0.9170310
C	2.0000001	-3 2604860	0.5165876
C	2.4174030	0.0168604	-3 2085695
C	2.4430040 2.4800077	0.3108004 0.1978747	2 4285000
C	2.4003911	2.1210141	-2.4203909 2 2077257
C	2.7193044 2.6764075	2.0014979	2.0011201
C	2.0704975 1 7344401	1.8041671	2.3301020
C	0.8034400	-1.8041071	-3.2380288
C	1.0934409	-0.8344208	-3.9283320
C	1.2001400 0.1012010	0.3494040 1 4751020	-3.8093000
C	0.1213012 0.1024227	1.4701909	-3.0449102
C	0.1934227	2.09855559	-3.0693434
C	1.3028078	3.0352189	-2.3458404
C	1.2037295	3.7724398	-1.1410003
C	2.0833727	3.5500470 2.7117015	-0.0210105
C	1.3088000	3.7117010	1.1800/81
C	1.5915002	2.9309120	2.3391191
C	0.4851408	2.5211418	3.1690550
C	0.4778181	1.3203534	3.9906256
C	1.5923562	0.3866532	3.8594426
C	1.2636239	-1.0265111	3.8559291
C	1.9935114	-1.9425909	2.9979586
C	1.0954365	-2.9672888	2.5477712
C	1.2750596	-3.6375233	1.2943552
C	0.8745791	-2.8751970	-2.8028966
C	1.1521864	-3.5916922	-1.6023327
C	0.0435872	-4.0501168	-0.8293474
C	0.1059314	-4.0677403	0.6084522
C	-4.1475764	0.1435879	0.1628248
С	-3.8375188	-0.5982664	1.3588468
С	-3.2389419	0.0285596	2.5072677
С	-2.8820935	1.4035248	2.4998901
С	-3.2046339	2.1655887	1.3409218
С	-3.8097089	1.5405393	0.1853407
С	-3.3792733	-1.9684871	1.3264088
С	-3.1478757	-2.6169685	0.0751717
\mathbf{C}	-3.5001874	-1.8819375	-1.1235899
\mathbf{C}	-4.0958236	-0.5475530	-1.1229620
\mathbf{C}	-3.3329847	2.2362313	-0.9959652
\mathbf{C}	-3.1755657	1.5527075	-2.2576588
\mathbf{C}	-3.6227492	0.1531015	-2.3440497
\mathbf{C}	-2.3562252	3.2284349	0.8777043
С	-2.4251876	3.2747750	-0.5543745

\mathbf{C}	-2.4065125	-0.9421384	3.1845525
\mathbf{C}	-2.5051185	-2.1800806	2.4402620
\mathbf{C}	-2.6938775	-2.0275887	-2.3022341
\mathbf{C}	-2.7294366	-0.7825144	-3.0320597
\mathbf{C}	-1.7121272	1.7742297	3.2492496
\mathbf{C}	-0.9228332	0.8422852	4.0408850
\mathbf{C}	-1.2479104	-0.5772812	3.9599079
\mathbf{C}	-0.1285518	-1.5006004	3.9042772
\mathbf{C}	-0.2068904	-2.6875176	3.0759355
\mathbf{C}	-1.3818845	-3.0513078	2.3327379
\mathbf{C}	-1.2072740	-3.7770523	1.1225003
\mathbf{C}	-2.0839494	-3.5577946	-0.0022922
\mathbf{C}	-1.3078010	-3.7245111	-1.2056184
\mathbf{C}	-1.5718476	-2.9334402	-2.3559015
\mathbf{C}	-0.4720555	-2.5593824	-3.1831091
\mathbf{C}	-0.4648720	-1.3014815	-3.8837000
С	-1.5493988	-0.3787306	-3.7719593
\mathbf{C}	-1.2367653	1.0081987	-3.7929690
\mathbf{C}	-2.0147458	1.9458773	-3.0093618
\mathbf{C}	-1.1142132	2.9944948	-2.5792704
\mathbf{C}	-1.2831132	3.6546501	-1.3263927
\mathbf{C}	-0.8547189	2.8142489	2.7562096
\mathbf{C}	-1.1479423	3.5577743	1.5642614
\mathbf{C}	-0.0437641	4.0261459	0.8029519
\mathbf{C}	-0.1086207	4.0777682	-0.6339613
\mathbf{C}	0.0053998	0.6854948	-0.0995069
\mathbf{C}	-0.0124734	-0.6205249	0.0001677
Sc	0.0642604	0.0569876	2.1645436
Sc	1.9142574	-0.0402272	-1.0162930
\mathbf{Sc}	-1.9647585	0.0678744	-0.9115234

Cartesian coordinates of the distorted C₁-symmetric structure of the neutral doublet 2a isomer $\mathbf{Sc}_3\mathbf{C}_2@\mathbf{C}_{80}$

85			
00	Energy = See	Table S1	
С	0.2672624	3.0871446	2.7058242
С	1.3687224	2.2821267	3.1858092
С	0.3361823	3.8354815	1.4581688
С	1.5631729	3.7789966	0.7238341
С	2.6560200	2.9391277	1.1706794
С	2.5661805	2.1562408	2.3659053
С	-0.9602558	2.5066181	3.2074778
С	0.8471664	1.2129233	4.0455024
С	-0.8801346	4.0077705	0.7239475
С	1.5631727	3.7789967	-0.7238340
С	3.3334507	2.4247210	0.0000000
С	-0.6357588	1.3537745	4.0694039
С	3.2380703	0.8910885	2.3902094
С	2.6560202	2.9391276	-1.1706792
С	-2.1524291	2.5874737	2.3713793
С	-2.1024761	3.3727947	1.1723159
С	-0.8801346	4.0077705	-0.7239475
С	1.4710951	-0.1128549	3.8994038
С	0.3361824	3.8354815	-1.4581688
С	2.6715725	-0.2297165	3.1173431
С	3.9211823	0.3804865	1.2299943
\mathbf{C}	3.9312761	1.1240818	-0.0000000
\mathbf{C}	-1.4800436	0.1530010	3.9212075

С	-2.8570709	2.9817416	0.0000000
С	-2.1024760	3.3727947	-1.1723159
С	-3.0319882	1.4557638	2.3886081
С	2.5661792	2.1562410	-2.3659070
С	3.0195989	-1.4429396	2.3939012
С	0.6126628	-1.2787783	3.8903933
Ċ	3.7778870	-1.0574445	1.2274632
Č	0 2672625	3 0871445	-2.7058242
Č	-2.6716792	0 2501432	3 1180181
C	3 9211824	0.3804865	-12299944
C	-0.8337336	-1 1475831	3 8884686
C	1.3687227	2 2821268	-3 1858092
C	3 2380722	0.8910883	-2.3902088
C	-3.7943156	1.0736124	1.2294711
C	-3 6754858	1.0700121 1.8088354	-0.0000000
C	-2 1524291	25874738	-2 3713790
C	-0.9602558	2.5014150	-2.0110100 -3.2074778
C	0.9500159	-2 4815864	3 1576084
C	2 138/681	-2.4610004 -2.5654170	2 3720308
C	2.1504001	-1.7824566	-0.0000000
C	3.0546411 3.7778870	1.0574445	-0.0000000 1.9974639
C	3 2316080	-1.0074440 0.8705534	-1.2274032 2 3035570
C	-3.2310030 -1.3724170	-0.8795554	2.5950070 3.1452815
C	-1.5724170	1 212021020	4.0455024
C	3 0084075	1.2129235 0.3674725	-4.0400024 1 9977531
C	-3.3084073	-0.3074725 0.2207166	3.1173/38
C	2.0713724	-0.2297100 3 1055532	-3.1173438
C	-0.2754290 -0.2754290	-5.1055552 1.0726124	2.0875010 1.2204710
C	-3.7943130	1.0750124 1.9597745	-1.2294710
C	-0.0337300	1.3337743	-4.0094030
C	-3.0319883	1.40070000 2.1400537	-2.3880082 2 3647875
C	-2.5014024 3.0105080	-2.1420337 1 4420307	2.3041813
C	2.0193989 2.0652761	-1.4429397 -2.3710067	-2.3939013 1 1658214
C	2.0052701 2.7014124	-3.3710007 2.0200741	0.0000000
C	2.7914124 1 4710052	-2.9399741 0.1128540	3 8004030
C	1.4710952 2.0212018	-0.1128049 1 1076730	-3.8994039
C	-3.9212918	-1.1070739 0.2674725	-0.0000000 1.2277521
C	-3.9084075 2.6716701	-0.3074723	-1.2277551
C	-2.0710791	0.2301432 3.0544278	-5.1100101 1 5001077C
C	-0.3483943 1 4800426	-3.9544278	1.0091977C 2.0212075C
C	-1.4800430	4.1503010	-3.9212075C
C	0.8970380	-4.1505810	0.7479075C 1.1658214C
C	2.0052702	-3.3710000 2.5654170	-1.1030314C
C	2.1384081	-2.3034179 2.0202777	-2.3729308C
C	2.0409974	-2.9392111	2 2025570C
C	-5.2510080	-0.8793334 1 9787789	-2.3933370C
C	0.0120028 2.2051250	-1.2707702	-3.89039330
C	-5.2951559	-2.4002034	-0.00000000C
C	-1.3814890	-3.8401709	0.73042000
C	0.0970303	-4.1303010 1 1475921	-0.1419013C
C	-0.0337330	-1.1470001	-3.0004000U
C	0.9300139 2.5614622	-2.4010000 2.1400527	-3.1370003C
C	-2.0014023	-2.142000777	-2.304/8/80 1 16616700
C	-2.0409974 1 5014006	-2.9392111	-1.10010/90
C	-1.0014090	-3.0401/09 2.0544979	-U.1304288U 1 5001077C
C	-0.0400943 1 9704170	-3.3344278 2.2607002	-1.00919770 2.14500150
C	-1.3/241/0	-2.2097098 2.1055529	-3.14328150
C	-0.2704289	-3.1033332	-2.00/00110
C	0.1844/28	-0.1020080	-0.0000000C
U C	0.0242048	1.1309134	0.00000000 9.00747100-
SC Sc	-0.0190192	0.0117929	2.09/4/195C 2.007/710C
SC Sc	-0.0190193	0.011793U 9.9544655	-2.09/4/195C
ъc	0.0044387	-2.2044000	0.0000000000000000000000000000000000000

Cartesian coordinates of the distorted C_1 -symmetric structure of the anionic 1a isomer $Sc_3C_2@C_{80}$

85			
	Energy = See	Table S1	
С	3.9653195	-0.2399362	-1.3215777
С	3.4751487	0.5436859	-2.4605078
С	2.5340949	-0.0765606	-3.4189149
С	2.1036181	-1.4631692	-3.2583575
Ċ	2.6953240	-2.2424609	-2.1986429
Č	3.6004936	-1.6403129	-1.2421766
Č	2.9552378	1.8903426	-2.1862374
Č	3.0542381	2.5507065	-0.9013097
Č	3.6811752	1.8137702	0.1519231
Č	4.0692980	0.4297530	-0.0477875
Č	3.4109470	-2.3248019	0.0228066
Č	3.5403051	-1.6426593	1.2686911
C	3 8862677	-0 2564228	1 2084439
C	1.9612699	-3 2903831	-15274278
C	24053151	-3 3367252	-0 1627328
C	1 4994941	0.9067728	-37125041
C	1.1331511 1.7780517	2.1150657	-2 9823367
C	3 2708133	1.9727161	1.5114033
C	3.3917486	0.6914719	2.1784857
C	0 7533810	-1 8042369	-3 6077760
C	-0 2121469	-0.8122256	-4 0218199
C	0.2121103 0.1323483	0.5666696	-4 0341268
C	-0.8887276	1.5109346	-37153544
C	-0.5940537	2.7267726	-3.0028516
C	0 7401716	3.0390414	-2 6002769
C	0.9239588	3.7725165	-1 3927687
C	2.0646612	3.5162686	-0.5521210
C	1 6421309	3 6650563	0.8215377
C	2.2064187	2 8633301	1 8508039
C	1.3592468	2.0000001 2.4700310	29544877
C	1.5518419	1.2596434	37476125
C	25627868	0.3009642	3 2955656
C	2.3021000 2.2067244	-1.1015811	3 3384523
C	2.2007211 2.6945002	-2.0455152	2.3475625
C	1.6875095	-3.0530367	2.5176029 2.1556322
C	1.5049281	-3 6963466	0.8896756
C	0.0301380	-2 8687301	-2 9528934
C	0.6075717	-3.6021681	-1.8715779
Č	-0.2636250	-4.0494800	-0.8337513
Č	0.1807753	-4.0879610	0.5342695
Č	-3.9321211	0.1958837	1.2675644
Č	-3.3618701	-0.5669737	2.3465071
Č	-2.4745569	0.0351976	3.3043677
Č	-2.0928075	1.4041414	3.1958295
C	-2.6925473	2 1903623	2 1682107
Č	-3.5851174	1.5894421	1.2097520
Ć	-2.9513203	-1.9404570	2.1753994
Ć	-3.0698883	-2.5753124	0.8996105
Ċ	-3.7118086	-1.8254622	-0.1582195
С	-4.2318604	-0.4751827	0.0114029
С	-3.4335726	2.2902644	-0.0474748
С	-3.6384944	1.6200409	-1.3099263
\mathbf{C}	-4.1239983	0.2278100	-1.2873883
\mathbf{C}	-1.9803800	3.2512643	1.5033490
\mathbf{C}	-2.4281544	3.3193336	0.1407491

\mathbf{C}	-1.5072095	-0.9564984	3.7155407
\mathbf{C}	-1.8121708	-2.1801143	3.0126533
\mathbf{C}	-3.2694168	-1.9751379	-1.5169080
\mathbf{C}	-3.4877292	-0.7213220	-2.2091774
\mathbf{C}	-0.7568937	1.7500313	3.6025619
\mathbf{C}	0.2002630	0.7980119	4.1402055
\mathbf{C}	-0.1652428	-0.6107680	4.1016586
\mathbf{C}	0.8747590	-1.5466756	3.7385050
\mathbf{C}	0.5680187	-2.7474332	3.0005677
\mathbf{C}	-0.7716607	-3.0697064	2.6011088
\mathbf{C}	-0.9434481	-3.7829996	1.3811944
\mathbf{C}	-2.0847089	-3.5391370	0.5350736
С	-1.6627659	-3.7017169	-0.8328742
\mathbf{C}	-2.2117057	-2.8931307	-1.8678126
\mathbf{C}	-1.3638736	-2.5276098	-2.9573463
\mathbf{C}	-1.5194909	-1.2571177	-3.6190982
\mathbf{C}	-2.5228843	-0.3189457	-3.2171517
\mathbf{C}	-2.1949825	1.0678260	-3.3069169
\mathbf{C}	-2.7197596	2.0160398	-2.3480053
\mathbf{C}	-1.7169854	3.0443593	-2.1648023
\mathbf{C}	-1.5330539	3.6981673	-0.9069682
\mathbf{C}	-0.0395368	2.7832402	2.9062486
\mathbf{C}	-0.6273780	3.5502760	1.8424488
\mathbf{C}	0.2426379	4.0115907	0.8161949
\mathbf{C}	-0.2026920	4.0871033	-0.5504011
\mathbf{C}	-0.0780650	0.7655651	-0.2704702
\mathbf{C}	-0.0209704	-0.5286864	0.0800328
\mathbf{Sc}	0.6677613	0.2021624	1.9949798
Sc	1.6416820	0.0006416	-1.3472386
\mathbf{Sc}	-2.0778707	0.0840456	-0.4867191

Cartesian coordinates of the distorted C_1 -symmetric structure of the anionic 2a isomer Sc₃C₂@C₈₀

\cap	-	
×	h	
ι 🤉		

00			
	Energy = See	Table S1	
С	0.2789823	3.1076729	2.6976296
С	1.3738622	2.3014361	3.1758389
С	0.3498105	3.8483445	1.4519628
Ċ	1.5698290	3.7863619	0.7207749
Č	2 6553998	2 9466320	1 1663495
C	2.000000000000000000000000000000000000	2.9400020 2.1685422	23564787
C	2.0030124	2.1000422	2.3304181
C	-0.9403337	2.0001020	1 0227949
C	0.8510150	1.2300101	4.0527646
C	-0.8092200	4.0230499	0.7204929
C	1.5700262	3.7860336	-0.7215001
C	3.3271708	2.4310172	0.0001241
С	-0.6281002	1.3825285	4.0564845
С	3.2275175	0.9070567	2.3802108
С	2.6556904	2.9461221	-1.1664596
С	-2.1323012	2.6153449	2.3611265
С	-2.0789236	3.3956600	1.1671256
С	-0.8589802	4.0227805	-0.7221227
С	1.4674958	-0.0876175	3.8875139
С	0.3502582	3.8477981	-1.4531135
С	2.6600006	-0.2071992	3.1056072
С	3.9043508	0.3954950	1.2243612
С	3.9176858	1.1353254	0.0004058
С	-1.4731581	0.1879469	3.9084969
С	-2.8308424	3.0082610	-0.0009822
С	-2.0785297	3.3952638	-1.1689476
С	-3.0107985	1.4917675	2.3779088
С	2.5644459	2.1676724	-2.3563454
С	3.0012768	-1.4168800	2.3835891
С	0.6080996	-1.2461790	3.8797543
С	3.7578401	-1.0359779	1.2222675
Ċ	0.2798099	3.1067459	-2.6985689
Ċ	-2.6571442	0.2898603	3.1059458
Č	3.9047146	0.3951191	-1.2233026
Č	-0.8334880	$-1\ 1102756$	3 8782516
$\tilde{\mathbf{C}}$	1 3747913	2 3003246	-3 1761198
$\hat{\mathbf{C}}$	3 2281973	0.9062445	-2 3794934
$\hat{\mathbf{C}}$	-3 7695993	1.1130842	1 2226622
$\hat{\mathbf{C}}$	-3 6490911	1.1100042 1.8442624	-0.0009336
C	-9.1315/112	2.6145633	-0.00000000000000000000000000000000000
C	0.0455432	2.0140000	-2.0021010 3 1072315
C	0.0305008	2.0021000 2.4438850	-3.1372515 3 1450173
C	0.9393908	-2.4400009 2.5212755	3.1403170 3.2640200
C	2.1210300	-2.0313700 1 7570222	2.3042320
C	3.0333233 9.7591474	-1.7070000	0.0008240
C	3.7381474	-1.0303281	-1.2207700
C	-3.2158461	-0.8330010	2.3819059
C	-1.3/29322	-2.223/401	3.1330776
C	0.8522338	1.2352097	-4.0328037
C	-3.8881059	-0.3214359	1.2211058
C	2.6609001	-0.2082234	-3.1046886
C	-0.2835115	-3.0620103	2.6793657
C	-3.7691449	1.1126790	-1.2242885
С	-0.6268381	1.3811802	-4.0571816
С	-3.0099734	1.4909202	-2.3793964
С	-2.5552357	-2.0930101	2.3554885
С	3.0019955	-1.4176262	-2.3822483
С	2.0475514	-3.3335267	1.1626716

С	2.7727225	-2.9088581	0.0008693
С	1.4686628	-0.0889281	-3.8868822
С	-3.9020630	-1.0573631	-0.0004802
С	-3.8876202	-0.3218051	-1.2223427
С	-2.6561198	0.2888214	-3.1069759
С	-0.3599777	-3.9068554	1.5055150
С	-1.4719445	0.1866695	-3.9090640
С	0.8798311	-4.1042219	0.7466397
С	2.0479419	-3.3338157	-1.1610178
С	2.1223419	-2.5320660	-2.3627903
С	-2.6363191	-2.8858142	1.1615583
С	-3.2149744	-0.8343946	-2.3826842
С	0.6093043	-1.2473851	-3.8790865
С	-3.2845381	-2.3524216	-0.0001780
С	-1.5884206	-3.7987988	0.7373628
\mathbf{C}	0.8800504	-4.1043323	-0.7451007
С	-0.8322795	-1.1115100	-3.8781575
С	0.9405681	-2.4447659	-3.1448156
С	-2.5544069	-2.0937058	-2.3557125
С	-2.6359110	-2.8860883	-1.1615171
С	-1.5881843	-3.7989298	-0.7367023
С	-0.3594811	-3.9071067	-1.5043837
С	-1.3719382	-2.2247063	-3.1328570
С	-0.2826313	-3.0627498	-2.6785148
С	0.1936513	-0.1192590	0.0000416
С	0.0305798	1.1639587	-0.0001965
Sc	-0.0153712	0.6302588	2.0882052
Sc	-0.0152473	0.6295871	-2.0883535
Sc	-0.0150413	-2.2050586	0.0006553

Cartesian coordinates of the neutral closed-shell $\mathbf{Sc}_2\mathbf{C}_2@\mathbf{C}_{84}$

Energy = -4800.124353642 Hartree

\mathbf{C}	-1.1580717	-2.1957429	-3.3977383
\mathbf{C}	0.1732505	-1.8192257	-3.8200476
С	-3.3031967	-2.3198927	-1.5121989
С	-2.3234511	-3.3003403	-1.5142301
С	-1.2452847	-3.2551755	-2.4686106
С	-3.8209458	-1.8272301	-0.2693216
С	-1.8289028	-3.8153109	-0.2697981
С	-2.2176466	-3.2515004	0.9764263
С	-3.2574036	-2.2150133	0.9776579
С	-2.3307877	-1.3184779	3.0920578
С	-3.3056517	-1.2271416	2.0540351
С	-3.8387158	0.0679175	1.8271817
С	-0.0699862	-3.8301117	-1.8260604
С	1.2270489	-3.2975187	-2.0518348
\mathbf{C}	1.3197848	-2.3246991	-3.0892345
\mathbf{C}	2.3307877	-1.3184779	-3.0920578
\mathbf{C}	3.3056517	-1.2271416	-2.0540351
\mathbf{C}	3.8387158	0.0679175	-1.8271817
С	-0.4660691	-4.2339172	-0.5131978
\mathbf{C}	2.2176466	-3.2515004	-0.9764263
С	3.2574036	-2.2150133	-0.9776579
\mathbf{C}	0.4660691	-4.2339172	0.5131978
\mathbf{C}	1.8289028	-3.8153109	0.2697981
С	0.0699862	-3.8301117	1.8260604
\mathbf{C}	-1.3197848	-2.3246991	3.0892345

С	-1.2270489	-3.2975187	2.0518348
\mathbf{C}	1.8242554	-0.1746950	-3.8209781
\mathbf{C}	3.2581970	1.2405279	-2.4663051
С	2.2005618	1.1549141	-3.3982467
С	3.3031967	2.3198927	-1.5121989
С	2.3234511	3.3003403	-1.5142301
С	4.2413755	-0.4649909	0.5133508
С	4.2413755	0.4649909	-0.5133508
С	3.8209458	1.8272301	-0.2693216
Ċ	3.8209458	-1.8272301	0.2693216
Ċ	0.5106146	-0.5105202	-4.3447688
Č	1.2452847	3.2551755	-2.4686106
Ċ	1.1580717	2.1957429	-3.3977383
Ċ	-0.1732505	1.8192257	-3.8200476
Ċ	-0.5106146	0.5105202	-4.3447688
Č	0.4660691	4.2339172	-0.5131978
Č	0.0699862	3.8301117	-1.8260604
Č	-1.2270489	3.2975187	-2.0518348
C	-1.3197848	2.3246991	-3.0892345
Č	-0.4660691	$4\ 2339172$	0.5131978
C	1 8289028	3 8153109	-0 2697981
C	2.2176466	3 2515004	0.9764263
C	3 2574036	2.2010004 2.2150133	0.9704209 0.9776579
C	-3 2581970	-1.2405279	-2 4663051
C	-2 2005618	-1.2400275 -1.1540141	-3 3982467
C	-1.8242554	0.1746950	-3 8209781
C	-1.0242004 -2.3307877	1.3184770	-3.0209781
C	-3.3056517	1.9104779	-2.0540351
C	-3.8387158	-0.0679175	-1.8271817
C	-4 2413755	0.4640000	0 5133508
C	-4.2413755	-0.4649909	-0 5133508
C	-1.8280028	3 8153100	0.2607081
C	-2.2176466	3 2515004	-0.9764263
C	-3.2574036	2.2010004 2.2150133	-0.9704209
C	-3.8200458	1.8272301	0.2603216
C	-1.2452847	3.2551755	2.4686106
C	-2 3234511	3 3003403	1.5142301
C	-3 3031967	2.3108927	1 5121080
C	0.1732505	1.8192257	38200476
C	-1 1580717	2.1957429	3 3977383
C	3 8387158	-0.0679175	1.8271817
C	3,3056517	1.2271416	2.0540351
C	23307877	1.3184779	3.0920578
C	1 3197848	2.3246991	3 0892345
C	1.010101010 1.2270489	32975187	2.0518348
C	-0.0699862	3 8301117	1 8260604
C	2.3234511	-3 3003403	1.5200001 1.5142301
C	3 3031967	-2 3198927	1 5121089
C	2.2005618	-1.1549141	3.3982467
C	32581970	-1.2405279	2.4663051
C	1.8242554	0.1746950	3 8209781
C	-0.5106146	-0.5105202	4.3447688
C	-0.1732505	-0.9109202 -1.8192257	3 8200476
C	1 1580717	-2 1957/90	3 3077383
C	1 9/598/7	-2.1301423	2 4686106
C	0 5106146	0.5105202	4 3447688
C	-3 2581070	1 2405270	24663051
C	-2 2005618	1 1540141	3 3089467
C	-1 8949554	-0 1746050	3 8200781
C	0 6376539	0.000000	0.0000000
C	-0 6376539		
Sc			2 21886/2
Sc	0.0000000		-2.2188643

88				
Energy = -4800.236380102 Hartree				
С	-1.1585393	-2.1943040	-3.4040934	
С	0.1724453	-1.8195939	-3.8274004	
Ċ	-3.3010629	-2.3171563	-1.5130880	
Č	-2.3205848	-3.2981233	-1.5148697	
Č	-12466437	-3 2605818	-2 4759816	
$\tilde{\mathbf{C}}$	-3 8252477	-1 8280773	-0.2694361	
C	-1 8296442	-3 8196939	-0.2698066	
C	-2.200442	-3.2500727	0.9824704	
C	-3 2560381	-9.2009727 -9.9171796	0.9824704	
C	2 3300288	1 2182665	3 0088384	
C	3 3045120	1.0100000 1.0080077	2.0567557	
C	2 8252426	-1.2202277 0.0705491	2.0001001	
C	-3.6332430	0.0703421 2.9967971	1.0302092	
C	-0.0725998	-3.8207871	-1.8290930	
C	1.2281430	-3.2903980	-2.0040208	
C	1.3196800	-2.3238700	-3.0960850	
C	2.3300288	-1.3183665	-3.0988384	
C	3.3045120	-1.2282277	-2.0567557	
C	3.8352436	0.0705421	-1.8302892	
C	-0.4694161	-4.2292834	-0.5123119	
C	2.2197321	-3.2509727	-0.9824704	
С	3.2569381	-2.2171726	-0.9835486	
С	0.4694161	-4.2292834	0.5123119	
С	1.8296442	-3.8196939	0.2698066	
С	0.0723998	-3.8267871	1.8290930	
С	-1.3196800	-2.3238700	3.0960850	
С	-1.2281436	-3.2963985	2.0545258	
С	1.8244408	-0.1735744	-3.8283560	
С	3.2638773	1.2424108	-2.4741300	
С	2.1992102	1.1557858	-3.4047607	
С	3.3010629	2.3171563	-1.5130880	
С	2.3205848	3.2981233	-1.5148697	
С	4.2366809	-0.4684087	0.5125470	
С	4.2366809	0.4684087	-0.5125470	
С	3.8252477	1.8280773	-0.2694361	
С	3.8252477	-1.8280773	0.2694361	
С	0.5112961	-0.5109509	-4.3535173	
С	1.2466437	3.2605818	-2.4759816	
Ċ	1.1585393	2.1943040	-3.4040934	
Č	-0.1724453	1.8195939	-3.8274004	
Č	-0.5112961	0.5109509	-4.3535173	
Č	0 4694161	4 2292834	-0 5123119	
$\tilde{\mathbf{C}}$	0.0723998	3.8267871	-1 8290930	
C	-1.2281/36	3 2063085	-2.0545258	
C	-1.2201400	2 3238700	-3.0940250	
C	0.4604161	4 2202834	-5.0500050 0.5123110	
C	1 8206442	4.2292034 3.8106030	0.2608066	
C	1.0230442 2.2107221	3 2500727	-0.2038000	
C	2.2197321	0.2009727	0.9824704	
C	5.2009561 2.0020772	2.2171720	0.9850480	
C	-3.2038/73	-1.2424108	-2.4(41300	
C	-2.1992102	-1.1557858	-3.4047607	
C	-1.8244408	0.1735744	-3.8283560	
C	-2.3300288	1.3183665	-3.0988384	
C	-3.3045120	1.2282277	-2.0567557	
C	-3.8352436	-0.0705421	-1.8302892	
C	-4.2366809	0.4684087	0.5125470	

\mathbf{C}	-4.2366809	-0.4684087	-0.5125470
\mathbf{C}	-1.8296442	3.8196939	0.2698066
\mathbf{C}	-2.2197321	3.2509727	-0.9824704
\mathbf{C}	-3.2569381	2.2171726	-0.9835486
\mathbf{C}	-3.8252477	1.8280773	0.2694361
\mathbf{C}	-1.2466437	3.2605818	2.4759816
\mathbf{C}	-2.3205848	3.2981233	1.5148697
\mathbf{C}	-3.3010629	2.3171563	1.5130880
\mathbf{C}	0.1724453	1.8195939	3.8274004
\mathbf{C}	-1.1585393	2.1943040	3.4040934
\mathbf{C}	3.8352436	-0.0705421	1.8302892
\mathbf{C}	3.3045120	1.2282277	2.0567557
\mathbf{C}	2.3300288	1.3183665	3.0988384
\mathbf{C}	1.3196800	2.3238700	3.0960850
\mathbf{C}	1.2281436	3.2963985	2.0545258
\mathbf{C}	-0.0723998	3.8267871	1.8290930
\mathbf{C}	2.3205848	-3.2981233	1.5148697
\mathbf{C}	3.3010629	-2.3171563	1.5130880
\mathbf{C}	2.1992102	-1.1557858	3.4047607
\mathbf{C}	3.2638773	-1.2424108	2.4741300
\mathbf{C}	1.8244408	0.1735744	3.8283560
\mathbf{C}	-0.5112961	-0.5109509	4.3535173
\mathbf{C}	-0.1724453	-1.8195939	3.8274004
\mathbf{C}	1.1585393	-2.1943040	3.4040934
\mathbf{C}	1.2466437	-3.2605818	2.4759816
\mathbf{C}	0.5112961	0.5109509	4.3535173
\mathbf{C}	-3.2638773	1.2424108	2.4741300
\mathbf{C}	-2.1992102	1.1557858	3.4047607
\mathbf{C}	-1.8244408	-0.1735744	3.8283560
\mathbf{C}	0.6369468	0.0000000	0.0000000
С	-0.6369468	0.0000000	0.0000000
\mathbf{Sc}	0.0000000	0.0000000	2.2280544
\mathbf{Sc}	0.0000000	0.0000000	-2.2280544