Electronic Supporting Information for "Temperature-Dependence of Hydrogen Oxidation Reaction Rates and CO-Tolerance at Carbon-Supported Pt, Pt–Co, and Pt–Ru Catalysts"

Hiroyuki Uchida,^a Kenji Izumi,^a Koich Aoki,^b and Masahiro Watanabe^a*

^a Clean Energy Research Center, University of Yamanashi, Takeda 4, Kofu 400-8510, Japan

^b Graduate School of Engineering, Fukui University, Bunkyo 3-9-1, Fukui 910-8507, Japan

(1) Supplementary data sets for Figure 1 (hydrodynamic voltammograms)

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

Figure S1. Hydrodynamic voltammograms for the HOR at Nafion-coated supported catalysts in H₂ saturated 0.1 M HClO₄ at 30 to 90 °C measured at a potential sweep rate of 0.5 mV s⁻¹ and various mean flow rates of the solution, $U_{\rm m}$, from 10 to 50 cm s⁻¹.

(2) Evaluation method of kinetically controlled current $I_{\rm K}$ from Γ^1 vs. $U_{\rm m}^{-1/3}$ plot

Figure S2. Γ^{-1} vs. $U_m^{-1/3}$ plots at 0.020 V vs. RHE(*t*) obtained from hydrodynamic voltammograms at Nafion-coated supported catalysts in H₂-saturated 0.1 M HClO₄ solution in the temperature range from 30 to 90 °C. Solid lines are least-squares fits. The kinetically controlled current density *j*_K was calculated by *j*_K = *I*_K/*S*°, where *S*° is the electrochemically active area of the working electrode.

(3) Supplementary data sets for Figure 5; relationship between log $(1-\theta_{CO})$ and t_{ad} at 50 to 90 °C.

Figure S3. Plots of *log* $(1-\theta_{CO})$ vs. t_{ad} at various supported catalysts upon exposure to 0.1 M HClO₄ solution saturated with 0.30% CO (H₂ balance) at 0.050 V and 30°C. Solid lines are the least-squares fits.