Electronic Supplementary Information for PCCP article

Counter-Ion Modulation of the Long-Distance π-Bonding of the Open-Shell *p*-Benzoquinone Anions

Sergiy V. Rosokha,^{*} Jianjiang Lu, Tetyana Y. Rosokha, and Jay K. Kochi

Molecular structures of [{K(dibenzo-18-crown-6)**DDQ**}₂], [{K(18-crown-6)**DDQ**}₂], [{Na(15-crown-5)**CA**}₂], [(K(15-crown-5)₂]**CA**, [K(18-crown-6) (THF)₂]**CA** and [{K(18-crown-6)**CA**}₂]O_n; concentration- and temperature-dependencies of the absorption spectra of Na(15-crown-5)**DDQ** and Na(15-crown-5)**CA** salts in dichloromethane,solid-state spectra of **DDQ** dimers, atomic charges residing on the anionic **DDQ** moieties, bondlengths of neutral and anionic (π -bonded and monomeric) **DDQ** and **CA** moieties, Gaussian 98 comoputations of energies of multi-ion assemblies of π -bonded **DDQ** anions, details of the coulombic force computations, crystallographic parameters and the details of the structure refinements.

Figure S1. Molecular structures of the $[{K(dibenzo-18-crown-6)DDQ}_2]$ (A), $[{K(18-crown-6)DDQ}_2]$ (B), and $[{Na(15-crown-5)CA}_2]$ (C) complexes.

Figure S2. Crystal lattice of the $[K(15\text{-}crown-5)_2]CA$ (left) and $[K(18\text{-}crown-6)(THF)_2]CA$ (right) salts showing separated monomeric chloranil anion-radical.

Figure S3. Molecular structure of $[{K(18-crown-6)CA}_2]O_n$ salt (n<1).

Figure S4. (A) Concentration dependence of the absorption of solution of Na(15-crown-5)**DDQ** salt in CH₂Cl₂ at 22°C. B) Quadratic approximation of the absorption of 695 nm band of these solutions. C) Relationship between experimental absorption of 695 nm and the values of absorption calculated for the dimerization process in eq 3 with $\varepsilon_D = 2.3 \times 10^4$ and $K_D = 5$.

Figure S5. Temperature dependence of equilibrium constant of dimer formation in eq 1 in the solutions of contact ion-pairs salt Na(15-crown-5)**DDQ**.

Figure S6. UV-Vis absorption of the solution of Na(15-crown-5)**CA** salt in CH₂Cl₂ showing the dimers band at $\lambda_{max} \sim 700$ nm at high concentration and low temperatures. A) Salt concentrations (mM): 1.0, 4.3, 7.2, 8.6 at 22°C. B) Temperatures (°C): 20, -5, -30, -60, -90 (2 mM solution).

Figure S7. Solid state spectra of **DDQ** dimers (measured in nujol oil): [{K(18-crown-6)(THF)(**DDQ**)}₂] (magenta), [{K(18-crown-6) (**DDQ**)}₂] (blue), ([{K(dibenzo-18-crown-6)(**DDQ**)}₂] (yellow), [{Na(15-crown-5)(**DDQ**)}₂] (red), (Na⁺(cryptand))₂[**DDQ**₂] (olive), (Et₄N)₂[**DDQ**₂] (black). For comparison, black dashed line shows spectrum of the [{Na(15-crown-5)(**DDQ**)}₂] dimer in dichloromethane solution.

Chart S1. Atomic charges of **DDQ**[•] for the electrostatics energies and forces computations.

$x_{d} x_{b} x_{b}$								
	0-							
Counter ion	Typeb	x x	h	C				
Dich	lorodicva	a 10-p-benzoquir	none	C				
1 497								
	N ^c	1.214	1.487	1.354				
		1.219	1.499	1.354				
			1.481					
		1.217	1.491	1.354				
$({\rm Fc}^{*})^{+ d}$	SM	1.247	1.454	1.369				
			1.444	1.384				
		1.247	1.449	1.377				
		1 225 (2)	1.453	1 274				
Na ⁺ (cryptand)	SD	1.235 (3)	1.409	1.374				
		1.244	1.407	1.396				
		1.240	1.445	1.386				
		1.2 10	1.450	1000				
$W^{+}(10)$ $C)^{0}$		1.242(7)	1.425	1.356				
K (18-crown-6) ⁸	NTD	1.231	1.463	1.375				
			1.468					
		1.237	1.452	1.366				
		1 249(4)	1.472					
		1.241	1.461	1.394				
			1.479	1.354				
K ⁺ (dibenzo-18-crown-6)	TD		1.454					
		1.246	1.479	1 292				
		1.243	1.440	1.365				
			1.474	1.554				
		1.245	1.465	1.372				
			1.471					
$N_{0}^{+}(15 - 270)$		1.236(7)	1.478	1.357				
Na (15-crown-5)		1.242	1.454	1.388				
			1.493					
	TD	1.239	1.474	1.372				
			1.470					
		1 001 (0)	1.472	1.349				
		1.231 (3)	1.452 1 <i>454</i>	1.381				
K ⁺ (18-crown-6)	TD	1.230	1.434 1 <i>4</i> 78	1.345				
		1.232	1.469	1.385				
		1.202	1.450					
			1.450					
		1.231	1.462	1.365				

Table S1. (Geometric characteris	stics of the	e <i>p</i> -benzoo	quinone	moieties	(in Å	a) ^a .

Counter-ion	Type ^b	а	b	с				
Tetrachloro-p-benzoquinone								
-	N ^e	1.211	1.489	1.344				
		1.211	1.489	1.344				
			1.456					
No ⁺ (amentand)	SM	1.252 (3)	1.455	1.366				
Na (cryptand)	21/1	1.251	1.447	1.362				
			1.453					
		1.252	1.453	1.364				
			1.451					
$\mathbf{V}^{+}(10, \dots, \mathbf{C})$	CM	1.247 (3)	1.449	1.369				
K $(18\text{-crown-6})(1\text{HF})_2$	SM	1.251	1.454	1.365				
			1.449					
		1.249	1.451	1.367				
			1.456					
	C1 (1.248 (2)	1.443	1.365				
$K^{(15-crown-5)_2}$	SM	1.254	1.446	1.368				
			1.452					
		1.251	1.449	1.367				
			1.454					
		1.249 (3)	1.454	1.362				
NPr ₄	SD	1.252	1.456	1.366				
			1.453					
		1.251	1.454	1.364				
			1.454					
$V_{c}^{+}(10)$	TD	1.247(5)	1.440	1.337				
K [*] (18-crown-6) ^s	TD	1.266	1.477	1.364				
			1.418					
		1.256	1.443	1.351				
			1.462					
	TD	1.252(2)	1.434	1.360				
Na ^(15-crown-5)	TD	1.261	1.442	1.356				
			1.466					
		1.256	1.451	1.358				

a) Average bond length are shown in bold, and representative values of s..u. of individual bonds (one for each structure) are shown in parenthesis. b) N- neutral molecule, SM – separated monomer, SD – separated dimer, TD – tethered dimer, NTD – non-tethered dimer. c) From ref. [5]. d) From ref [19b] e) From: van Weperen K.J.; Visser, G.J. *Acta Cryst. B.* **1972**, *28*, 338. (CCDC refcode TCBENQ02) f) From mixed salt [{K(18-crown-6)DDQ}₂] [K(18-crown-6)(THF)₂]I₃. g) See structure in Figure S2.

Table S2. Energy (in hartrees) of the $[DDQ_2]^{2-} \pi$ -dimers with longitudinal and transversal offsets in the presence and in the absence of counter-ions^[a]

longitudina	l offset	transversal offset			
A) $[DDQ_2]^{2-}$	-2970.742351	B) $[DDQ_2]^{2-}$	-2970.725847		
C) $[DDQ_2]^{2-}+2Na^+$	-3295.003594	D) [Na- DDQ] ₂	-3295.391616		

a) From the single-point Gaussian 98 (B3LYP/6-311G*) computations^b based on the experimental coordinates of [(Na(crp)]**DDQ** salt (A and C) and (Na(15-crown-6)**DDQ** salt (B and D) without counter-ion (A and B) and in the presence of counter-ions (C and D). [Note that the energy of [**DDQ**₂]²⁻ + 2Na⁺</sup> aggregate was calculated (for comparison with [{**DDQ**-Na}₂]) in the presence of two sodium cations, which were placed at large separation ~ 10 Å from dimer).

Table S3. Coulombic forces vectors F (normalized components F'_x , $F'_y F'_x$ and absolute values |F|, in eV Å⁻¹) on the anionic p-benzoquinone due to the surrounding point charges (from π -bonded anionic benzoquinone and alkali-metal cations) in comparison with the normalized components R'_x , R'_y and R'_z of the vector **R** connecting centroids of π -bonded benzoquinones)

Multi-ion assembly	Type	$ \mathbf{F} $	F' _x	F'y	F'z	R' _x	R'y	R'z
$[\mathbf{DDQ}_2]^{2-}$	SD^{a}	0.003	-0.52	0.78	0.32	-0.10	-0.58	-0.81
$[\mathbf{DDQ}_2]^{2-} + 2Na$	- ^{a,b}	0.003	-0.79	0.61	0.02	-0.10	-0.58	-0.81
$[\mathbf{DDQ}_2]^{2-}$ +10Na	_ ^{a,c}	0.004	-0.71	0.05	0.70	-0.10	-0.58	-0.81
[{K(18-crown-6)(THF) ·DDQ } ₂]	NTD	0.046	0.52	0.80	-0.29	-0.05	-0.58	-0.81
$[{Na(15-crown-5)\cdot DDQ}_2]$	TD	0.059	-0.47	-0.22	-0.86	-0.44	-0.00	-0.90

a) From salt with $[Na(cryptand)]^+$ counter-ion. b) Taking into account two Na⁺ cations positioned closest to π -dimer. c) Taking into account ten Na⁺ cation surrounding π -dimer.

Compound	[Na(cryptand)]	[{Na(15-crown-	- [{K(dibenzo-18-	$[{K(18-crown-6)(THF)}]$	[{K(18-crown-6)	$[{Na(15-crown-5)}]$	[K(18-crown-6)	[K(15-crown-
	DDQ	5) DDQ $_{2}$	crown-6) DDQ $_{2}$ ·2CH ₂ Cl ₂	DDQ } ₂][K(18-crown-6) (THF) ₂]I ₃	\mathbf{DDQ}_{2}	CA_{2}	$(THF)_2$]CA	5) ₂] CA
Empirical formula	$\begin{array}{c} C_{26}H_{36}Cl_2N_4\\NaO_8\end{array}$	$\begin{array}{c} C_{36}H_{40}Cl_4N_4\\ Na_2O_{14} \end{array}$	$\begin{array}{c} C_{58}H_{52}Cl_8K_2 \\ N_4O_{16} \end{array}$	$\begin{array}{c} C_{68}H_{104}Cl_4I_3K_3 \\ N_4O_{26} \end{array}$	$C_{40}H_{48}Cl_4K_2N_4O_{16}$	$C_{32}H_{40}Cl_8Na_2O_{14}$	$C_{26}H_{40}Cl_4KO_{10}$	$C_{26}H_{40}Cl_4KO_{12}$
М	626.48	940.50	1422.84	2033.35	1060.82	978.22	693.48	725.48
Space group	P-1	$P2_1/n$	$P2_1/n$	P-1	P-1	$P2_1/n$	P-1	P-1
a, Å	11.725(11)	10.475(9)	23.161(19)	9.801(4)	11.798(5)	10.4693(18)	10.310(2)	9.1370(9)
b, Å	11.861(11)	11.937(9)	11.395(10)	13.809(5)	12.904(6)	11.934(2)	11.263(3)	12.4232(14)
c, Å	12.081(12)	17.109(14)	24.64(2)	17.672(7)	16.941(8)	16.832(3)	14.960(5)	15.7716(17)
α, °	73.66(9)	90	90	107.006(7)	81.106(9)	90	100.809(19)	83.702(2)
β, °	68.33(7)	102.43(2)	104.468(19)	95.915(7)	74.123(9)	103.684(17)	95.31(2)	74.859(2)
γ, °	86.56(8)	90	90	105.038(7)	79.622(9)	90	108.649(16)	73.018(3)
V, $Å^3$	1497(3)	2089(3)	6297(9)	2167.0(15)	2425.0(19)	2043.2(6)	1594.9(8)	1651.7(3)
Z	2	2	4	1	2	2	2	2
F(000)	658	972	2920	1032	1100	1004	726	758
ρ , g/cm ³	1.390	1.495	1.501	1.558	1.453	1.590	1.444	1.459
Refls	22900	12675	35701	28225	30079	31022	24637	25360
Indpndt	8909	3026	13822	10440	14042	6294	9527	9727
Obsd [I>2o(I)]	3947	1599	5097	4542	7316	3374	5066	7577
\mathbf{R}_1	0.0602	0.0652	0.0460	0.0574	0.0668	0.0387	0.0517	0.0470
wR_2	0.1274	0.1410	0.0831	0.1143	0.1588	0.0654	0.1090	0.1307
GooF	0.826	0.992	0.804	0.949	1.001	0.804	0.853	1.015

Table S4 Crystallographic parameters and the details of the structure refinements.