Supporting information

Distribution of guest molecules in Pluronic micelles studied by double electron

 electron resonance and small angle X-ray scatteringSharon Ruthstein ${ }^{+}$, Arnold M. Raitsimring ${ }^{\ell}$, Ronit Bitton ${ }^{\wedge}$, Adelheid Godt ${ }^{\$}$, Daniella Goldfarb ${ }^{+}$
${ }^{+}$Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, ${ }^{\&}$ Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA, ${ }^{\wedge}$ Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel. ${ }^{\text {\& }}$ Bielefeld University, Faculty of Chemistry, Organic Chemistry Universitätsstr. 25, D-33615 Bielefeld, Germany

Figure S1. Experimetal calibration of λ obtained from measurements on solutions of TEMPO radicals in methanol/toluene (1:1) with two concentrations, 2 mM (circles) and 5 mM (squares). The 2 mM sample was measured with two pump pulses of durations 20 and 40 ns and the 5 mM sample with three pump pulse durations of 20,30 , and 40 ns . Other experimental parameters: $\mathrm{T}=25 \mathrm{~K}$; $v_{0}=32.437 \mathrm{GHz}$ and $\mathrm{B}_{0}=1.158$ T. $\lambda_{\text {exp }}$ was determined from Eqs 7,8 .

Figure S2. DEER decays at various concentrations of spin-probe for (a) a biradical and (b) a triradical. (c) Plot of $\ln \left(\mathrm{V}(\mathrm{t}=2.88 \mu \mathrm{~s}) / \mathrm{V}_{0}\right)$ vs the molecular concentration of the biradical and triradical. According to Eq. 24, the slope is equal to $\lambda \mathrm{nt} / \chi$, where $\mathrm{t}=2.88 \mu \mathrm{~s}$ and n is the number of spins per spin-probe molecule. For $\lambda=0.2, \chi=0.96$ and 1.06 are obtained for the biradical and triradical, respectively. The intercept for the triradical give $\ln V_{\text {intra }}(t)=-2 \ln (1-\lambda)=0.44$ as expected. This is not the case for the biradical where the effective λ for the pair is lower because of the shorter distances, some of which are outside the range of the DEER method.

