Supporting information

Distribution of guest molecules in Pluronic micelles studied by double electron

electron resonance and small angle X-ray scattering

Sharon Ruthstein⁺, Arnold M. Raitsimring[&], Ronit Bitton[^], Adelheid Godt^{\$}, Daniella Goldfarb⁺

⁺Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, [&]Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA, [^]Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel. [&]Bielefeld University, Faculty of Chemistry, Organic Chemistry Universitätsstr. 25, D-33615 Bielefeld, Germany

<u>Figure S1</u>. Experimetal calibration of λ obtained from measurements on solutions of TEMPO radicals in methanol/toluene (1:1) with two concentrations, 2 mM (circles) and 5 mM (squares). The 2 mM sample was measured with two pump pulses of durations 20 and 40 ns and the 5 mM sample with three pump pulse durations of 20, 30, and 40 ns. Other experimental parameters: T= 25K; v_0 =32.437GHz and B₀=1.158 T. λ_{exp} was determined from Eqs 7,8.

Figure S2. DEER decays at various concentrations of spin-probe for (a) a biradical and (b) a triradical. (c) Plot of $\ln(V(t=2.88 \ \mu s)/V_0)$ vs the molecular concentration of the biradical and triradical. According to Eq. 24, the slope is equal to $\lambda nt/\chi$, where t=2.88 μ s and n is the number of spins per spin-probe molecule. For λ =0.2, χ =0.96 and 1.06 are obtained for the biradical and triradical, respectively. The intercept for the triradical give $\ln V_{intra}(t)$ = -2ln(1- λ)=0.44 as expected. This is not the case for the biradical where the effective λ for the pair is lower because of the shorter distances, some of which are outside the range of the DEER method.