## **Supporting Information**

## Chromocene in porous polystyrene:

## an example of organometallic chemistry in confined spaces

Jane Estephane,<sup>a,b</sup> Elena Groppo, \*<sup>a</sup> Jenny G. Vitillo,<sup>a</sup> Alessandro Damin,<sup>a</sup> Carlo Lamberti,<sup>a</sup> Silvia Bordiga<sup>a</sup> and Adriano Zecchina\*<sup>a</sup>



Figure S1. Top: IR spectra, in the 1120-750 cm<sup>-1</sup> region, of  $CrCp_2/PS$  compared to that of bulk  $CrCp_2$  and to those of  $CrCp_2$  in solution of pentane and toluene. The spectrum of  $CrCp_2/PS$  is background subtracted using as background the spectrum of PS before  $CrCp_2$  sublimation. Bottom: computed infrared spectra for the <sup>3</sup>B and <sup>3</sup>B<sub>st</sub> chromocene conformers as obtained at the UB3LYP level. A scaling factor of 0.973 has been adopted, in order to align the band around 1100 cm<sup>-1</sup>.



Figure S2. Bottom: from bold black to bold red, evolution of FTIR spectra of the  $CrCp_2/PS$  system upon increasing  $P_{CO}$  at 77 K. The frequency regions of CO stretching (left) and Cp deformations (right) are shown. All spectra are background subtracted using as background the spectrum of PS before  $CrCp_2$  sublimation. Top: simulated IR spectra for the  ${}^{3}Cp_2Cr...CO$  (green) and  ${}^{1}Cp_2Cr...CO$  (orange) adducts as obtained at the UB3LYP level. A scaling factor of 0.973 has been adopted, in order to align the band around 1100 cm<sup>-1</sup>.



Figure S3. Molecular Kohn-Sham orbital energy level diagram for chromocene and sketches of its molecular orbitals at different level of calculations. Alpha orbitals surfaces reported: LUMO+1, LUMO, HOMO, HOMO-1, HOMO-2. Beta orbitals surfaces reported: LUMO, HOMO.

Electronic supplementary information (ESI) for *Physical Chemistry Chemical Physics* This journal is © the owner societies 2009



Figure S4. Molecular Kohn-Sham orbital energy level diagram for CO complex with chromocene and sketches of the molecular orbitals of the system. Alpha orbitals surfaces reported: LUMO+1, LUMO, HOMO, HOMO-1, HOMO-2. Beta orbitals surfaces reported: LUMO, HOMO.

| Table S1.   | Structures   | and relat  | ive energi | es ( $\Delta E$ ) | for the  | different  | chromocene   | conformers     | (triplet |
|-------------|--------------|------------|------------|-------------------|----------|------------|--------------|----------------|----------|
| spin state) | . All the di | stances ar | e reported | in Å. T           | he notat | ion of the | carbon atoms | s is that used | Figure   |
| 3.          |              |            |            |                   |          |            |              |                |          |

|                                    | Eclipsed <sup>3</sup> B |         | Staggered <sup>3</sup> B <sub>st</sub> |         |   | Eclipsed <sup>3</sup> A |         | Staggered <sup>3</sup> A <sub>st</sub> |         |
|------------------------------------|-------------------------|---------|----------------------------------------|---------|---|-------------------------|---------|----------------------------------------|---------|
|                                    | UBP86                   | UB3LYP  | UBP86                                  | UB3LYP  | _ | UBP86                   | UB3LYP  | UBP86                                  | UB3LYP  |
| Cr-Cp                              | 1.800                   | 1.838   | 1.803                                  | 1.841   | - | 1.800                   | 1.838   | 1.803                                  | 1.841   |
| Cr-C <sub>5</sub>                  | 2.112                   | 2.143   | 2.124                                  | 2.152   |   | 2.237                   | 2.259   | 2.230                                  | 2.254   |
| $Cr-C_1(C_4)$                      | 2.155                   | 2.182   | 2.160                                  | 2.186   |   | 2.194                   | 2.218   | 2.192                                  | 2.218   |
| $Cr-C_2(C_3)$                      | 2.225                   | 2.248   | 2.220                                  | 2.244   |   | 2.124                   | 2.154   | 2.134                                  | 2.161   |
| $C_5-C_1(C_5-C_4)$                 | 1.445                   | 1.431   | 1.444                                  | 1.431   |   | 1.425                   | 1.415   | 1.425                                  | 1.415   |
| $C_1-C_2(C_4-C_3)$                 | 1.431                   | 1.420   | 1.431                                  | 1.420   |   | 1.438                   | 1.426   | 1.438                                  | 1.426   |
| C <sub>2</sub> -C <sub>3</sub>     | 1.422                   | 1.413   | 1.422                                  | 1.413   |   | 1.447                   | 1.433   | 1.446                                  | 1.432   |
| С5-Н                               | 1.0848                  | 1.076   | 1.0851                                 | 1.0760  |   | 1.0864                  | 1.077   | 1.0863                                 | 1.0771  |
| C <sub>1</sub> (C <sub>4</sub> )-H | 1.0853                  | 1.076   | 1.0854                                 | 1.0763  |   | 1.0858                  | 1.077   | 1.0858                                 | 1.0766  |
| C <sub>2</sub> (C <sub>3</sub> )-H | 1.0862                  | 1.077   | 1.0861                                 | 1.0770  |   | 1.0849                  | 1.076   | 1.0852                                 | 1.0761  |
| ∠Cp,H (°)                          | -2.744                  | 2.400   | -2.491                                 | -2.220  |   | 2.828                   | 2.371   | 2.996                                  | 177.499 |
| ∠Cp-Cr-Cp (°)                      | 177.742                 | 178.773 | 179.998                                | 179.993 |   | 177.816                 | 178.783 | 180.000                                | 179.996 |
|                                    |                         |         |                                        |         |   |                         |         |                                        |         |
| $\Delta E$ (kJ/mol)                | 0                       | 0       | 2.6635                                 | 1.5938  |   | 0.0087                  | -0.0016 | 2.6570                                 | 1.5925  |

Cr-Cp denotes the distance from the metal atom to the center of cyclopentadienyl ring.  $\angle$ Cp,H denotes the angle of the C<sub>5</sub>-H bond out of the cyclopentadienyl ring; this angle is defined to be positive when the C-H bonds are bent toward the metal atom.  $\angle$ Cp-Cr-Cp is the angle between the Cr atom and the center of the centers of mass of the two cyclopentadienyl rings. Positive values of  $\Delta E$  indicate a lower stability.

Even if the difference in energy is almost inexistent, the geometry of the <sup>3</sup>A and <sup>3</sup>B states is quite different: in particular, the tilt of the two Cp rings with respect to the  $D_{5h}$  symmetry (perfectly parallel Cp rings) is opposite in the two cases. Moreover, in the <sup>3</sup>B conformer the most near C atoms belonging to differ rings are the two tops of the pentagons (C<sub>5</sub> and C<sub>12</sub> atoms in Figure 3), whereas in the <sup>3</sup>A conformer they are the most far. The larger the C-Cr distance (i.e. the local distance between the Cp rings), the smaller the corresponding C-C bonds; as a consequence, the succession of the C-C bonds in the rings results to be completely reversed in the <sup>3</sup>A and <sup>3</sup>B conformers. Among them, the <sup>3</sup>B geometry seems to be more suitable to interact with incoming molecules.

Conversely, in the  ${}^{3}A_{st}$  and  ${}^{3}B_{st}$  conformers the Cp rings are almost perfectly parallel each other (all the Cp-Cr-Cp angles of 180°), although a little slipping, along the C<sub>5</sub>CrC<sub>12</sub> plane in the  ${}^{3}A_{st}$  conformer and along the plane passing through C<sub>1</sub> and C<sub>4</sub> and orthogonal to it in the  ${}^{3}B_{st}$  conformer, exists . Also in the staggered case, an inverse succession of the C-C bonds is observed in the Cp rings of the two conformers.