Signal Transmission through Molecular Quantum-Dot Cellular Automata: A Theoretical Study on Creutz-Taube Complexes for Molecular Computing (Electronic Supplementary Information)

Ken Tokunaga*

Research and Development Center for Higher Education, Kyushu University, Ropponmatsu 4-2-1, Fukuoka 810-8560, Japan (Dated: December 7, 2008)

^{*}E-mail:tokunaga@rche.kyushu-u.ac.jp

I. ELECTRONIC STRUCTURE

Molecular orbitals (MOs) of **py** complex calculated by HF method (Fig. S1) show the same tendency with those by DFT method. It is easy to see that a set of 112β , 113β , and 114β of HF method corresponds to a set of 112β , 113β , and 114β of DFT method. Similar to 112β and 113β of Fig. 4, 113β and 114β of Fig. S1 are mainly constructed from two $4d_{yz}$ orbitals, and have bonding and anti-bonding characters, respectively.

MOs of **bpy** complex in Fig. S2 are quite different from those by DFT method due to its C_1 geometrical symmetry. At both q=+0.5 and q=-0.5, all MOs are localized on the particular part of the molecule. Electronic structure of **bpy** complex is little influenced by the switch of the input. Namely, electric field originated from injected one-electron is not enough to move electron from one side to the other side of the **bpy** complex.

II. REVERSE SWITCHING

In the *normal* switch of the article, q^i and q^f have mainly positive sign and negative sign, respectively. Fig. S3 shows time evolution of Mulliken charge by the *reverse* switch in which q^i and q^f have mainly negative sign and positive sign, respectively. Different from the normal switch, at the initial condition, Q_1 has larger positive charge than Q_2 . (q^i, q^f) dependence of T, A, and t_{st} of reverse switch are very similar to that of *normal* switch.

FIG. S 1: Frontier molecular orbitals and orbital energies of **py** complex calculated by HF method with (a) q^{i} =+0.5 and (b) q^{f} =-0.5. r_{q-Ru} =5Å

FIG. S 2: Frontier molecular orbitals and orbital energies of **bpy** complex calculated by HF method with (a) q^{i} =+0.5 and (b) q^{f} =-0.5. r_{q-Ru} =5Å

FIG. S 3: Time evolution of Mulliken charge of **py** complex calculated by DFT method upon reverse switch. (a) Both initial charge q^i and final charge q^f vary, but $|q^i| = |q^f|$: $(q^i, q^f) = (-0.5, +0.5), (-0.3, +0.3), (-0.1, +0.1)$. (b) Only final charge q^f varies: $(q^i, q^f) = (-0.5, -0.3 \sim +0.5)$. (c) Only initial charge q^i varies: $(q^i, q^f) = (-0.5 \sim +0.3, +0.5)$.