Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates)

Annina Aebischer, Frédéric Gumy, and Jean-Claude G. Bünzli^{*}

Laboratory of Lanthanide Supramolecular Chemistry, École Polytechnique Fédérale de Lausanne (EPFL), BCH 1402, 1015 Lausanne (Switzerland)

Electronic Supplementary Information (ESI)

5 pages

^{*} jean-claude.bunzli@epfl.ch (Jean-Claude G. Bünzli)

Table S1.Doubly reduced matrix elements used in the calculations of the dipole strengths for absorptionand emission of $Cs_3[Eu(dpa)_3]$.

Transitio n	Element	Value	Transiti on	Element	Value
${}^{5}D_{2}\leftarrow {}^{7}F_{0}$	$\left\langle \Psi \left\Vert U^{2} \right\Vert \Psi' ight angle$	0.0008	${}^{5}D_{0}\rightarrow {}^{7}F$	$\left\langle \Psi \left\Vert U^{2} \right\Vert \Psi' \right angle$	0.0032
${}^{5}L_{6} \leftarrow {}^{7}F_{1}$	$\left\langle \Psi \left\Vert U^{6} \right\Vert \Psi' ight angle$	0.0090	${}^{5}D_{0} \rightarrow {}^{7}F$	$\left\langle \Psi \left\Vert U^{4} \right\Vert \Psi' ight angle$	0.0023
${}^{5}L_{6} \leftarrow {}^{7}F_{0}$	$\left\langle \Psi \left\Vert U^{6} \right\Vert \Psi' ight angle$	0.0155	${}^{5}D_{0} \rightarrow {}^{7}F$	$\left\langle \Psi \left\Vert U^{6} \right\Vert \Psi' ight angle$	0.0002
⁵ D₄← ⁷ F₀	$\left\langle \Psi \left\Vert U^{4} \left\Vert \Psi' ight angle$	0.0011			

Table S2. Doubly reduced matrix elements used in the calculations of the dipole strengths for absorption⁴⁴and emission⁴⁰ of $Cs_3[Tb(dpa)_3]$.

Transitio n	$\left \left\langle \Psi \left\ U^{2} \left\ \Psi' ight angle ight ^{2}$	$\left \left\langle \Psi \left\ U^{4} \left\ \Psi' ight angle ight ^{2}$	$\left\ \left\langle \Psi \right\ U^{6} \left\ \Psi' ight angle ight\ ^{2}$	$\left \left\langle \Psi \right \left L+2S \right \left \Psi \right \right\rangle$
${}^{5}D_{4} \leftarrow {}^{7}F_{6}$	0.0010	0.0008	0.0013	
${}^{5}D_{3} \leftarrow {}^{7}F_{6}$ ${}^{5}G_{6} \leftarrow {}^{7}F_{6}$	} 0.0017	0.0047	0.0132	
⁵ L ₁₀ ← ⁷ F ₆	0.00000	0.00040	0.05920	
${}^{5}D_{4} \rightarrow {}^{7}F_{0}$	0.00066	0.00156	0.00187	
${}^{5}D_{4} \rightarrow {}^{7}F_{1}$	0.01459	0.00109	0.00356	
${}^{5}D_{4} \rightarrow {}^{7}F_{2}$	0.00034	0.00187	0.00193	
${}^{5}D_{4} \rightarrow {}^{7}F_{3}$	0.00269	0.00047	0.00074	0.128
${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{4}$	0.00090	0.00040	0.00013	0.004
${}^{5}D_{4} \rightarrow {}^{7}F_{5}$	0.00000	0.00154	0.00000	0.728
${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{6}$	0.00000	0.00246	0.00000	

c/M	$(L_{a}-L_{c})/10^{-7}$	~	$E_c / 10^6$	(Q±2σ)/%	% (tris
		α			species)
Ln = Eu					
4.56×10 ⁻⁴	3.308	0.91	8.93	27.0 ± 0.1	92.9
2.28×10 ⁻⁴	2.820	0.71	7.35	26.4 ± 0.7	90.0
1.14×10 ⁻⁴	2.051	0.55	5.08	24.8 ± 0.5	86.2
5.70×10 ⁻⁵	1.200	0.33	2.90	24.2 ± 0.6	81.1
2.85×10 ⁻⁵	0.602	0.16	1.41	22.7 ± 1.4	74.4
1.43×10 ⁻⁵	0.270	0.07	0.65	24.1 ± 1.0	65.9
Ln = Tb					
4.52×10 ⁻⁴	3.325	0.89	7.54	22.6 ± 0.1	95.0
2.26×10 ⁻⁴	2.642	0.55	5.95	22.5 ± 0.3	93.0
1.13×10 ⁻⁴	1.774	0.30	4.01	22.4 ± 0.5	90.2
5.65×10 ⁻⁵	1.034	0.15	2.28	22.1 ± 0.7	86.4
2.82×10 ⁻⁵	0.618	0.08	1.33	21.4 ± 0.2	81.4
1.41×10 ⁻⁵	0.270	0.03	0.646	24.0 ± 2.8	74.7

Table S3.Quantum yield and related data (see main text for definitions) of Cs₃[Ln(dpa)₃], Ln = Eu, Tb versus
concentration in Tris-HCl 0.1 M.

Ln = Eu		Ln = Tb	
рН	(Q ± 2ơ) / %	рН	(Q ± 2ơ) / %
2.36 3.11	2.6 ± 0.2 6.8 ± 0.2	2.65 3.23	10.0 ± 0.1 16.2 ± 0.9
4.16	24.0 ± 1.4	4.36	20.0 ± 0.3
5.10	24.8 ± 1.7	4.94	20.7 ± 0.6
5.90	24.6 ± 0.5	5.81	20.1 ± 0.9
6.97	25.9 ± 1.1	7.06	21.0 ± 0.1
8.04	24.8 ± 1.3	8.42	21.0 ± 1.0
8.83	23.5 ± 1.8	9.12	21.0 ± 1.3
10.06	25.7 ± 0.9	10.02	21.2 ± 0.5

Table S4. Quantum yields of $Cs_3[Ln(dpa)_3]$, $Ln = Eu (6.7 \times 10^{-5} \text{ M})$, Tb (6.6×10⁻⁵ M), versus pH. Excitation wavelength: 280 nm.

Figure S1. Emission spectrum of Cs₃[Eu(dpa)₃] in Tris-HCl under ligand excitation (280 nm).

Figure S2. Emission spectra of a microcrystalline sample of $Cs_3[Eu(dpa)_3]$ under ligand excitation (280 nm) and direct f-f excitation (395 nm, ${}^5L_6 \leftarrow {}^7F_0$, dotted line).