Power Spectrum Density Method

Weierstrass-Mandelbrot (W-M) showed that many engineered nanosurfaces possess fractal geometry. Fractal dimensions are inversely proportional to the spatial frequency ω (equation 1),
$\mathrm{P}(\mathrm{w})=1 / \omega(5-2 \mathrm{D}) \ln \gamma^{\prime}$
where, γ^{\prime} is the parameter that determines the density of frequencies in the profile. Ausloos and Burman generalized the W-M algorithm by introducing multiple variables to account for higher dimensionally stochastic processes and developed the following equation 2 ,
$\mathrm{z}(\rho, \theta)=\left(\ln \gamma^{\prime} \div \mathrm{M}\right) \sum_{m=1}^{M} A_{m} \sum_{n=-\infty}^{\infty}\left(k \gamma^{n}\right)^{(D-3)}\left\{\cos \phi_{m, n}-\cos \left[k \gamma^{n} \rho \cos \left(\theta-\alpha_{m}\right)+\phi_{m, n}\right]\right\}$
where, ρ and θ are planar coordinates of a surface point with height z and are related with planar Cartesian coordinates (x, y).

The power spectral density (denoted as p) of an isotropic 2-D fractal Brownian function which is denoted as f varies as:

$$
\begin{equation*}
P f(x, y) \alpha p^{-\beta} \tag{3}
\end{equation*}
$$

$\theta^{1 / 2}=\tan (y / x)$
where $\beta \geq 0$, and (x, y) are the planar Cartesian coordinates, and $p=\left(x^{2}+y^{2}\right)^{1 / 2}$ is the radial frequency.

The height function z of a fractal surface, exhibiting randomness in all planar direction making the surface three dimensional, is the real part of the Ausloos-Berman function. D is the fractal dimension $(2>D>3)$ and is a variant of the spatial frequencies. The parameter M denotes the number of superimposed ridges used to construct the surface. For instance, surfaces possessing cylindrical corrugations have $M=1$. The anisotropy of the surface geometry is controlled by the magnitude of A_{m}. For example, $A_{m}=A$ is for isotropic surface for all m values and A_{m} varies with m for anisotropic surfaces. The arbitrary angle α_{m} is used to offset the ridges in the azimuthal direction and equals $\pi \mathrm{m} / \mathrm{M}$ when all ridges are equally offset. The parameter k is a wave number related to the sample size, $k=2 \pi / L$. The uniform distribution of the values of random phase $\phi_{m, n}$ in the interval $[0, \pi]$ can be generated using a random number generator.

The exponent β in equation 3 is related to the fractal dimension, D_{f} :
$\beta=8-2 D_{f}$

Values of β and D_{f} are calculated from the slope of the linear part of a plot where the Xaxis is expressed in linear measurement units that represent the spatial frequency or the wavelength of the fast Fourier transform (FFT) 2-D image and the Y-axis shows the relative intensity of the image components or PSD in arbitrary units.

The relationship between the fractal dimension and the assembly of nano-features on surfaces is relatively complicated for the 3-D features on the surface. In general, D_{f} values obtained using 2-D fractal analysis vary between 2 and 3 , with D_{f} of 3
representing the densed or filled surface and D_{f} less than 3 represents departure from completely filled or dense structure to open or branch-like structures.

