Figure S1: (a) Simulation of the basic frequency correlation ridges for a spin system with S=1/2 and I=1/2, assuming HFC tensors ${}^{A}H_{\beta3}(T1)$ (green), ${}^{B}H_{\beta3}(T1)$ (red), and $H_{\beta2}(T1)$, $H_{\beta2}(T2)$, $H_{\beta3}(T2)$, $H_{\beta2}(T3)$ and $H_{\beta3}(T3)$ (blue). (b) For reference purposes, only HFC tensors ${}^{A}H_{\beta3}(T1)$ (green) and ${}^{B}H_{\beta3}(T1)$ (red) are simulated here.

Figure S2: Simulation of the sum correlation ridges expected for a three-spin system *S*=1/2, $I_{\beta2}=1/2$ and $I_{\beta3}=1/2$ assuming the HFC tensors of (a) $H_{\beta2}(T2)$ and $H_{\beta3}(T2)$ and (b) $H_{\beta2}(T3)$ and $H_{\beta3}(T3)$.

Figure S3: Energy profile for the rotation of the O1-HO1 hydroxy group about the O1-C1 bond in model M5 (see Figure 6 and Figure 9). A methodology identical to that used in ref. 8 was adopted: the proper dihedral angle HO1-O1-C1-C2 (D) was varied in 15° steps over 360° and for each value, a geometry optimisation (in an <ab2c> supercell) was performed for which the dihedral angle was constrained. Full circles indicate the results of constrained optimizations. The red triangle at D \approx 315°, obtained by a non-constrained optimization, corresponds to the conformation of model M5 on which EMR calculations were performed (Figure 7 and Table 5). It has the lowest energy (E = -2.708886.10⁶ kJ/mol) and was taken as reference for the energy scale. There is another, shallower local minimum at D = 75°, but the geometry of the radical centre in this conformation is virtually identical to that in the global minimum, and this was therefore not further explored.

