Supplementary Information

	Table S1.	Aromatic	amines	investigated	in	this study
--	-----------	----------	--------	--------------	----	------------

Monoamines		Diamines		
••	Aniline (Ani) : Aldrich ≥99.5%	#2# -{	1,4-Benzenediamine (pNH2) : Fluka technical, ≥97.0% (GC/NT)	
••	2-methyl aniline (oCH3) : Aldrich ≥99%		1,3-Benzenediamine (mNH2) : Aldrich flakes, ≥99%	
	2-tertbutyl aniline (otBu) : Aldrich 99%	Ŕ	1,3-Benzenediamine, 4- methyl (oCH3mNH2) : Aldrich 98%	
	2-trifluoromethyl aniline (oCF3) : Aldrich 99%		1,2-Benzenediamine, 3- methyl (oCH3oNH2) : Aldrich 97%	
■ ² • \	2-methoxy aniline (oOMe) : OEKANAL [®] , analytical standard (Riedel-de Haën)		1,4-Benzenediamine ,2- (trifluoromethyl) (oCF3pNH2) : Aldrich 97%	
•.•	2-hydroxy aniline (oOH) : Fluka puriss., ≥99.0% (NT)		Benzenamine, 4,4'- methylenebis (diPhpNH2) : Fluka purum, ≥97.0% (GC)	
	3-hydroxy aniline (mOH) : Fluka purum, ≥98.0% (T)			

Table S2. Concentration and demixing pressures for the aromatic amines investigated in this

study (the melting point of each chemical is reported for information).

Amine	Concentration	Demixing	Melting point		
	(mmol/L)	pressure (MPa)	(°C)		
Monoamines					
Ani	5.1	8.0	-6		
oCH3	4.3	8.0	-28		
otBu	3.0	8.0	-60		
oCF3	3.7	8.0	-31		
oOMe	4.1	8.8	5		
oOH	7.3	30.0	173		
mOH	7.6	30.0	122		
Diamines					
pNH2	4.7	30.0	141		
mNH2	7.8	30.0	65		
oCH3mNH2	7.1	30.0	98		
oCH3oNH2	6.7	11.0	62		
oCF3pNH2	3.5	9.4	56		
diPhpNH2	3.1	30.0	90		

Figure S1: Optimized structure of the amine-CO₂ complexes at the B3LYP and MP2 level using the aug-cc-pVDZ basis set.

Amines	B3LYP	MP2
(A) Ani		38989
(B) oCH3		
(C) otBu		
(D) oCF3		

Figure S2. Comparison of the calculated frequencies (unscaled) of the v_1 band of monoamines and their complex with CO₂ at the B3LYP/Aug-cc-pVDZ and MP2/Aug-cc-pVDZ computational level.

In order to validate the frequency calculations performed in the DFT approximation, we have also performed a vibrational analysis of few monoamines (Ani, oOH, oCF3, ETA, TBA) and their complexes with CO₂ using ab-initio method at the MP2 level. The unscaled calculated frequencies at the B3LYP and MP2 level associated with the symmetric stretching mode (v₁) of the NH₂ group of the amines and their complexes with CO₂ are compared on figure S2. We observe that the predicted frequencies using the two different methods agree nicely. Indeed, although the absolute values of (v₁) are not strictly the same, we observe that the frequency values follow the same order: $v_1(oCF3) > v_1(oOH) > v_1(Ani) > v_1(ETA) > v_1(TBA)$. Moreover, the shift to lower frequencies upon the complex formation is reproduced by both types of calculations. Therefore, although the DFT method do not estimate accurately dispersion forces, the vibrational behavior of the NH₂ group in theses amines and their complexes with CO₂ is well reproduced by the B3LYP method. This result is somehow coherent with the fact that the NH₂ group is primarily influence by the EDA interactions occurring between CO₂ and the amines, which have been shown to be well accounted by the B3LYP method.