Supporting information

for

Different Electronic Structures and Spectroscopic Properties of Cationic [M(ppy)₂(N[^]N)]⁺ (M=Rh, Ir; N[^]N=Hembpy,

H₂dcbpy), A DFT Study

Submitted to journal- Phys. Chem. Chem. Phys. by:

Xiao-Na Li^{a,b}, Zhi-Jian Wu^a, Hong-Jie Zhang^{*,a}, Xiao-Juan Liu^a, Liang Zhou^{a,b},

Zhe-Feng, Li^{a,b}, and Zhen-Jun Si^{a,b}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of

China.

^b Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China

	energy		compositions (%	(;			
MO	(eV)	Rh	ppy	bpy	СООН	CH_3	bond type
150a	-3.7827	$2.2/1.7p_z$	1.0	91.8	1.7	3.3	$\pi^*(bpy)$
149a	-3.9457	$4.9/2.4d_{x^2-y^2}$	86.1	8.8			$\pi^*(ppy)$
148a	-4.0091	$4.9/2.4d_{yz}$	92.1	4.9			$\pi^*(ppy)$
147a	-4.4553			89.5	9.6		$\pi^*(bpy)$
146a(L)	-5.1228	$2.6/1.5 d_{yz}$		86.4	10.1		$\pi^*(bpy)$
НС	MO-LUMO gap (.	3.0281eV)					
145a(H)	-8.1509	$30.4/4.2d_{xy}$ +5.2 d_{xz} +8.9 $d_{x^2-y^2}$ +9.0 d_{z^2}	67.6	2.0			d (Rh)+π(ppy)
144a	-8.5095	1.6	96.7	1.6			π(ppy)
143a	-8.7387	$5.5/2.8 d_{x^2-y^2} + 2.2 d_{z^2}$	93.8				π(ppy)
142a	-8.8298	$3.0/2.4d_{yz}$	95.1	1.8			π(ppy)
141a	-9.2590	$61.1/37.1d_{xy}+10.7d_{xz}+10.1d_{x^2-y^2}$	34.2	4.4			d (Rh)+ π (ppy)

Table S1. Partial molecular orbital compositions (%) for Rh1 in the ground state.

Electronic Supplementary Material for PCCP This journal is © The Owner Societies 2009 2

Material for PCCP	ner Societies 2009
Electronic Supplementary	This journal is © The Ow

	the ground state.
	or Ir2 in
	(%) to
:	compositions
	orbital
•	molecular
,	Partial
	TableS2.

	energy		compositions (⁹	(0)			
MO	(eV)	Ir	ppy	bpy	СООН	CH_3	bond type
150a	-3.8999	$3.9/1.4d_{z^2}$	54.7	36.0	4.0	1.3	$\pi^*(ppy)+\pi^*(bpy)$
149a	-3.9500	$4.8/1.5 d_{x^2 - y^2}$	24.0	65.9	3.3	1.9	$\pi^*(\mathrm{ppy})^+(\mathrm{bpy})$
148a	-4.0009	$4.7/2.6d_{yz}$	80.4	4.7			$\pi^*(ppy)$
147a	-4.5696			88.7	11.2		$\pi^*(bpy)$
146a(L)	-5.2510	$4.1/2.7 d_{yz}$		82.6	10.0		$\pi^*(bpy)$
НС)MO-LUMO gap ((2.5875eV)					
145a(H)	-7.8385	$34.0/4.7 d_{xy} + 6.1 d_{xz} + 9.4 d_{x^2-y^2} + 10.1 d_{z^2}$	63.2	2.7			d (Ir)+π(ppy)
144a	-8.4470	$4.0/1.6d_{yz}$	94.2	1.7			$\pi(ppy)$
143a	-8.6222	$14.4/5.7 d_{xy} + 4.7 d_{x^2-y^2} + 3.1 d_{z^2}$	85.4	1.1			$\pi(ppy)$
142a	-8.7381	$10.5/7.8 d_{yz}$	87.7	1.7			$\pi(ppy)$
141a	-8.9087	50.1/31.5 d_{xy} +8.3 d_{xz} +7.1 $d_{x^2-y^2}$	46.4	3.6			d (Ir)+ π (ppy)

Dr PCCP	s 2009
Material fo	er Societie
mentary N	The Owne
c Suppler	nal is © J
Electronic	This jour

	ons (%) for Rh3 in the ground state.	
	olecular orbital composition	
us journar is 🗢 1	able S3 Partial mo	

E

	energy		compositions ((%)		
МО	(eV)	Rh	ppy	bpy	СООН	bond type
157a	-4.0273	$4.8/2.5 d_{yz}$	92.5	2.6		$\pi^*(ppy)$
156b	-4.0991	$5.1/1.8 d_{xz} + 1.7 d_{yz}$	92.0	3.9		$\pi^*(ppy)$
155b	-4.5500			91.2	7.6	$\pi^*(ppy)$
154a	-4.7497		2.8	73.0	26.4	$\pi^*(bpy)$
153b(L)	-5.3957	$3.0/2.2 d_{xz}$	3.8	81.8	11.4	$\pi^*(bpy)$
ОН	MO-LUMO gap (2	2.8636eV)				
152a(H)	-8.2593	$29.7/22.1d_{xy}+4.4d_{x^2-y^2}+3.0d_{z^2}$	68.3	2.0		d (Rh) $+\pi(ppy)$
151b	-8.5980	$1.6/0.8d_{_{JZ}}$	96.8	1.6		π(ppy)
150a	-8.8271	5.3/2.8 d_{xy} +1.6 $d_{x^2-y^2}$	94.1	0.6		$\pi(ppy)$
149b	-8.9185	$2.6/1.9 d_{xz}$	95.7	1.7		π(ppy)
148a	-9.3896	$61.7/53.9d_{z^2}+7.2d_{x^2-y^2}$	34.8	3.5		d (Rh)+π(ppy)

TableS4. Partial molecular orbital compositions (%) for Ir4 in the ground state.	

	energy		compositions	(%)		
МО	(eV)	Ir	ppy	bpy	СООН	bond type
157a	-4.0189	$5.7/2.2 d_{xy} + 1.3 d_{z^2}$	91.5	2.8		$\pi^*(ppy)$
156b	-4.0989	$5.0/2.7 d_{xz}$	91.1	3.9		$\pi^*(ppy)$
155b	-4.6480	1.4		93.2	7.8	$\pi^*(bpy)$
154a	-4.8670	1.2		74.2	25.3	$\pi^*(bpy)$
153b(L)	-5.5155	$4.9/4.1d_{xz}$	3.5	81.2	10.4	$\pi^*(bpy)$
	HOMO-LUMO gap	(2.4468eV)				
152a(H)	-7.9623	$33.2/24.3 d_{xy} + 4.7 d_{x^2-y^2} + 3.9 d_{z^2}$	64.2	2.6		d (Ir) $+\pi(ppy)$
151b	-8.5455	$3.4/2.6d_{xz}$	94.9	1.7		$\pi(ppy)$
150a	-8.7264	$11.1/6.2d_{z^2} + 3.2d_{x^2-y^2} + 1.6d_{xy}$	87.6	1.3		d (Ir)+π(ppy)
149b	-8.8434	$7.0/6.6d_{xz}$	91.7	1.3		$\pi(ppy)$
148a	-9.0516	53.9/45.6 d_{z^2} +7.8 $d_{x^2-y^2}$	43.1	3.0		d (Ir)+π(ppy)

Table	S5. Single-electron trar	nsitions according to TDDI	FT calculations for the absorption	n of the complexes in acetonitrile	
	state	energy (eV)	major contribution	character	exptl ²⁰
Ir2	T_1	583/2.12	HOMO→LUMO(100%)	d (Ir)+π(ppy)→π*(bpy)/MLCT/LLCT	
	T_2	452/2.75	HOMO-2→LUMO(47%)	d (Ir)+π(ppy)→π*(bpy)/MLCT/LLCT	467
			HOMO-4→LUMO(35%)	d (Ir)+π(ppy)→π*(bpy)/MLCT/LLCT	
	T_3	445/2.78	HOMO→LUMO+2(65%)	d (Ir)+π(ppy)→π*(ppy)/MLCT/ILCT	
	T_4	440/2.82	HOMO-1→LUMO(65%)	$\pi(ppy) \rightarrow \pi^*(ppy)/LLCT$	
	T_5	437/2.84	HOMO→LUMO+3(35%)	d (Ir)+π(ppy)→π [*] (ppy)/MLCT/ILCT	
			HOMO-1→LUMO+2(22%)	d (Ir)+π(ppy)+π(bpy)→π*(ppy)/MLCT/ILCT/LLCT	
Ir4	T_1	681/1.82	HOMO→LUMO(100%)	d (Ir)+π(ppy)→π*(bpy)/MLCT/LLCT	
	T_2	536/2.31	HOMO-6→LUMO(48%)	(lr)+π(ppy)+π(bpy)→π [*] (bpy)/MLCT/ILCT/LCT	
			HOMO-4→LUMO(28%)	d (Ir)+π(ppy)→π*(bpy)/MLCT/LLCT	
	T_3	486/2.55	HOMO-1→LUMO(48%)	$\pi(ppy) \rightarrow \pi^*(ppy)/LLCT$	
	T_4	459/2.70	HOMO-2→LUMO(50%)	d (Ir)+π(ppy)→π*(bpy)/MLCT/LLCT	457
			HOMO-6→LUMO(43%)	(lr)+π(ppy)+π(bpy)→π [*] (bpy)/MLCT/ILCT/LLCT	
	$T_{\mathcal{S}}$	457/2.71	HOMO-1→LUMO(49%)	$\pi(ppy) \rightarrow \pi^*(ppy)/LLCT$	
			HOMO-3→LUMO(33%)	$\pi(ppy) \rightarrow \pi^*(ppy)/LLCT$	

9

ns	
.9	
lat	
n	
alc	
ö	
F	
H	
D	
Ε	
e	
th	
er	
pr	
In	
ŝ	
ate	
sti	
ð	
ite	
. <u>S</u>	
G	
Je	
tł	
п.	
S	
X	
le	
du	
or	
0	
he	
ft	
0	
<u></u>	
ಲ	
ns	
<u>10</u>	
sit	
õ	
du	
oD	
<u> </u>	
tal	
bi.	
or	
Ц	
ılε	
ವ	
Je	
й	
11	
tia	
ari	
Ч	
6.	
5	
le	
ab	
Ε	

MO	energy			composition (%	(bond type
	(eV)	M(M=Rh or Ir)	ppy	bpy	СООН	CH_3	
Rh1 146 (H)	-5.67	6.8	14.9	71.4	6.1	0.8	$\pi^*(ppy+bpy)$
145 (H-1)	-9.03	3.2	5.1	90.5	1.1		$\pi^*(bpy)$
Ir2 146(H)	-5.70	3.2	3.1	86.6	5.7	1.1	$\pi^*(bpy)$
145(H-1)	-8.95	33.2	52.4	14.3			$d(Ir)+\pi(ppy+bpy)$
Rh3 153(H)	-5.70	3.2	5.3	83.1	8.4		$\pi^*(bpy)$
152(H-1)	-9.09	0.6	0.3	98.1	1.0		$\pi(bpy)$
Ir4 153(H)	-5.98	3.4	3.1	85.8	7.6		$\pi^*(bpy)$
152(H-1)	-9.07	30.8	62.9	4.7			$d(Ir) + \pi(ppy)$

Fig. S1 The calculated d(M, M=Rh or Ir)-based e_g*-like orbital of the complexes.

Fig.S2 The simulated absorption spectra of isolated ligands in acetonitrile media.