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Introduction

This appendix is divided into two sections, the first providing a detailed description of 

the molecular modeling used in this work and the second additional 1H-ROSEY NMR 

spectra’s for the interested reader 

1. Molecular modeling

This appendix describes the theoretical foundation behind the in-house molecular 

modeling software used for the statistical thermodynamics calculations described in 

the paper. According to the general naming from molecular modeling of ligand-

receptor complexes, the small bile salt molecules are termed ligands and the 

cyclodextrin host molecule is termed the receptor throughout the following text.

The reversible formation of non-covalent bonding between a ligand L and a receptor 

R into a ligand-receptor complex RL can be described by the equilibrium R + L  RL. 

The position of the equilibrium is determined by the binding energy also called the 

change in Gibbs free energy of the process, which determines the relative 

concentrations of the three different species L, R and RL.

With these species (neglecting entropy of the water molecules in the binding pocket) 

the binding process can energetically be described by the overall change in free 

energy, which at standard concentration equals: 


LRRLRLG   Eq. 1

where X is the chemical potential of species X that in statistical thermodynamics is 

expressed by:
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Here V is the volume of the system, Cº is the standard concentration and Z is the 

overall partition function or configurational integral defined by:

dr
RT

rWrUZ  





 


)()(exp Eq. 3

The integral over r of the potential energy U and the solvation energy W relates to the 

full potential energy surface (PES) of the species and thereby cover translational and 

rotational phase space as well as all internal degrees of freedom of the species. 

Getting a correct estimate of Z requires both a correct representation of the PES via U

and W and an adequate sampling/coverage of all relevant areas on the PES. By 

splitting the partition function Z into translational, rotational and internal degrees of 

freedom the chemical potential of the species becomes:







 

InternalRotTransX zzz
VC

RT


 1ln Eq. 4

For a free species that does not interact with other molecules (neglecting solvent) 

there is no resistance to either rotation or translation. In addition the external degrees 

of freedom are independent of the internal degrees of freedom. This allows for 

analytical integration over translational (x, y, z)-space and Euler-angle rotational 

space (, , ) yielding a factor of 82V for zTranszRo t.1 The volume terms cancel the 

chemical potential for a free species in equation 4, and are therefore given by:











InternalfreeX z
C

RT



28

 ln Eq. 5

Calculation and integration of the potential energy U and the solvation energy W over 

the remaining 3N – 6 internal degrees of freedom where N is the number of atoms 

comprising the species X, are hence left to be determined. This holds true for both the 
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free ligand and the free receptor, but the theoretical considerations for the bound 

ligand is more complicated. In the receptor-ligand complex the ligand is restricted in 

its translational and rotational freedom by an external force effected by the receptor. 

Therefore the integral over the 6 external degrees of freedom for the ligand in the 

ligand-receptor complex must be calculated numerically as they are dependent on the 

total complex. Under these circumstances, the standard chemical potential for the 

receptor bound ligand becomes:








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RT


 1ln Eq. 6

where R and L denotes the partition functions of the receptor and ligand parts in the 

bound complex. Presuming that the external degrees of freedom for the receptor are 

not affected by the ligand, the integration over translation and rotation can for this 

part of the partition function be done analytically, again yielding a factor of 82V, this 

leaves equation 6 to:


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Given these equations the overall change in free energy upon ligand binding then 

sums to Equation 8:
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Provided a correct representation and sampling of PES, the above equation allows for 

a correct calculation of G for the ligand binding under the approximation of the 

implicit treatment of the solvent.



PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

Page S4

Approximating the PES by Harmonic Functions

Using the harmonic oscillator - rigid rotor approximation (HORRA), motion around 

energy minima can be approximated by a harmonic energy profile centered at the 

bottom of the energy well. A harmonic function gives a good local approximation and 

has the advantage that all thermodynamic functions (e.g. entropy, free energy etc.) can 

be calculated analytically by classical mechanics of a harmonic oscillator.1 The 

disadvantage is that the approximation is only valid locally around the base of the 

energy well and that it is expensive in time to calculate for very large systems. 

Furthermore, at higher temperatures the thermal energy of the system increases to a 

level from the base of the minimum, making the approximation less precise. For drug 

size molecules at relevant temperatures however, the harmonic approximation has 

been shown to provide a fair sampling of the soft degrees of freedom on the potential 

energy surface of the molecule.2 Based upon this empiric knowledge, a formula for 

ZRT ln , where Z is the configurational integral (equation 3) and the combined 

energy provided by U and W (equal to E(r)), are the energy profile of the PES, which 

needs to be estimated, can be derived. Dependent on the coordinate basis, a Jacobian 

determinant can be necessary in order to account for the connection between the 

external and internal coordinates.2,3 However, as only the torsions angles and not the 

hard bond lengths and angles are considered, the Jacobian determinant is independent 

of the internal coordinates3 and it was be omitted in the calculations. 

If derived from a Taylor series expansion, the approximated harmonic energy profile 

E(r), of the potential at the base of the energy well, r takes the form:
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at this point was equal to zero the PES harmonic 

approximation was limited to the second order, hence the equation becomes:
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Eq. 9

where 
0

2

2

rrr
E











 is the curvature of the PES at the bottom of the well, which can be 

viewed as a force constant of a harmonic oscillator anchored at the base of the well. 

The whole concept is illustrated in Fig. 1S.

Fig. 1S. A) The PES is approximated by harmonic potentials centered at the bottom of 

the energy wells. For each conformer harmonic potentials are fitted to approximate 

each degree of configurational freedom. B) Harmonic potentials with a high 

curvature are used for narrow energy wells where the thermal energy is more 

localized whereas softer curved harmonic potentials are used to model the broader 

energy wells where the energy is more dispersed.
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Combination of this PES approximation with equation 1, allows the formal 

requirements to calculate the chemical potential of the bound ligand to be developed.

Approximating G by the Harmonic Oscillator Formalism

In cases were the internal degrees of freedom of the receptor are held fixed, like in 

most docking applications, and when the desolvation energy of the receptor is omitted 

the change in free energy of ligand binding can then be approximated by:



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
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,2,,, 8lnln


    Equation 10

Ignoring the internal degrees of freedom for the receptor is a crude approximation that 

in effect sets this terms to zero.4 In the case of the macro cyclic cyclodextrin molecule 

the internal degrees of freedom are highly correlated and they therefore cannot be 

easily treated, hence an approximation was applied.

The different factors in the partition function between the free and the bound ligand 

complex dependent functions, as they all relate to the reference frame of the receptor. 

The calculation of zTranszRotzInternal for the bound ligand must, therefore include 

considerations of the cross correlations between translation, rotation and the internal 

degrees of freedom. In practice, even the partition function for PES of the ligand 

alone needs a range of additional approximations in order to make the calculation 

feasible. For an extensive review of this subject see the review paper by Gilson et al.5, 

but the most central is a way to approximate the configurational integral Z for both the 

free and the bound ligand. As mentioned previously this can be done with the 

HORRA across an ensemble of conformers that represent the relevant low energy 

minima on the PES. 
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Approximating the Chemical Potential of the Bound Ligand

The energy of the system is approximated as the potential energy and its energy 

minima plus the harmonic potential describing the energy change as the system moves 

away from each local energy minimum by the use of HORRA. The chemical potential 

of a bound ligand in translation, rotation and torsion angle space r around a given 

local energy minimum i on the potential energy surface is therefore given by Equation 

11:
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(eq. 11)

where j and k runs over all degrees of freedom considered.

In matrix notation rrr   )H(
2
1

2
1 N

j kj
N

k jk rrE , where H(r) is the second 

derivative or Hessian matrix over all degrees of freedom; translational, rotational and 

torsion angles. The Hessian is a symmetrical Ntors + 6 by Ntors + 6 matrix where Ntors is 

the number of relevant torsional degrees of freedom. The Hessian matrix can be 

diagonalized into a set of Ntors + 6 eigenvalues vl and a set of Ntors + 6 eigenvectors 

el.2,3,5 The off-diagonal elements are thereby eliminated and the remaining diagonal 

elements have the form of a Gaussian function. The transformation from r into 

eigenvector space, r → e therefore gives:
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The product of the Ntors + 6 eigenvalues equals the determinant of the Hessian matrix 

with respect to the original torsional space. Back transformation from eigenvector to 

Cartesian space: er gives us:

 
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iLi
RTRTE  , Equation 13

which is the approximation to the chemical potential of the bound ligand 

conformation i integrated over rotation, translation and torsion angle space. With the 

translation in the x, y and z directions, rotation around the axis rx, ry, and rz and 

variation of N torsion angles  the Hessian matrix becomes:
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This approximation is, however only valid if the Hessian matrix is positive, defined as 

positive eigenvalues for all the structures representing the true minimum. Effectively, 

this means that the energy gradient must be very close to zero so all force field energy 

minimizations should be performed to a gradient below 10-3 kcal/mol/Å. 

With the chemical potential defined as shown above, Boltzmann weighting of all 

conformations of the ligand bound to the complex can be approximated with respect 

to the overall chemical potential of the bound ligand.

Approximating the Chemical Potential of the Free Ligand

The derivation of the chemical potential for the free ligand, is similar to the 

approximation of the bound ligand discussed above, though with the exception that 

the external degrees of freedom are treated analytically. The chemical potential for the 

free ligand therefore becomes:
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where NTorsion is the number of degrees of freedom (i.e. relevant torsion angles) and 

HTorsion is the Hessian matrix for the torsion angles only. The Hessian matrix has the 

form:
























































2

2

2

2

1

2

2

2

2
2

2

22

2
1

2

21

2

2
1

2

nnn

n

n

Torsions

EEE

EEE

EEE

H















The joint chemical potential over all conformers representing PES can easily be 

calculated with a Boltzmann weighting of the chemical potential of the individual 

conformers. Based on these approximations to the chemical potentials of the ligand in 

its bound and free form, GLig-binding for the formation of the complex can be 

calculated as the difference between the two chemical potentials, and the likely 

binding positions can be approximated.
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2. 1H-ROSEY NMR

Fig. 2S. Partial ROESY spectrum of TDC and βCyD. The region of mostly bile salt 

chemical shift is depicted at the x-axis and the region of CD chemical shift at the y-

axis (intermolecular region).
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Fig.3S. Partial ROESY spectrum of TCDC and βCyD. The region of mostly bile salt 

chemical shift is depicted at the x-axis and the region of CD chemical shift at the y-

axis (intermolecular region).

Fig.4S. Partial ROESY spectrum of TMC and βCyD. The region of mostly bile salt 

chemical shift is depicted at the x-axis and the region of CD chemical shift at the y-

axis (intermolecular region).
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