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Introduction

This appendix is divided into two sections, the first providing a detailed description of
the molecular modeling used in this work and the second additional "H-ROSEY NMR

spectra’s for the interested reader

1. Molecular modeling

This appendix describes the theoretical foundation behind the in-house molecular
modeling software used for the statistical thermodynamics calculations described in
the paper. According to the general naming from molecular modeling of ligand-
receptor complexes, the small bile salt molecules are termed ligands and the

cyclodextrin host molecule is termed the receptor throughout the following text.

The reversible formation of non-covalent bonding between a ligand L and a receptor
R into a ligand-receptor complex RL can be described by the equilibrium R + L S RL.
The position of the equilibrium is determined by the binding energy also called the
change in Gibbs free energy of the process, which determines the relative

concentrations of the three different species L, R and RL.

With these species (neglecting entropy of the water molecules in the binding pocket)
the binding process can energetically be described by the overall change in free
energy, which at standard concentration equals:

AGp, = My, —Hz =My Eq. 1
where iy is the chemical potential of species X that in statistical thermodynamics is

expressed by:
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Uy =_RTln£VLC°ZXj Eq. 2

Here V is the volume of the system, C° is the standard concentration and Z is the

overall partition function or configurational integral defined by:
Ur)y+w(r)
Z=|exp| —————=@dr Eq. 3
I q

The integral over r of the potential energy U and the solvation energy W relates to the
full potential energy surface (PES) of the species and thereby cover translational and
rotational phase space as well as all internal degrees of freedom of the species.
Getting a correct estimate of Z requires both a correct representation of the PES via U
and W and an adequate sampling/coverage of all relevant areas on the PES. By
splitting the partition function Z into translational, rotational and internal degrees of

freedom the chemical potential of the species becomes:

. 1
Ha= _RTIHE | 4O Ti‘fﬂs. Rit. Intgnalj Eq 4

For a free species that does not interact with other molecules (neglecting solvent)
there is no resistance to either rotation or translation. In addition the external degrees
of freedom are independent of the internal degrees of freedom. This allows for
analytical integration over translational (x, y, z)-space and Euler-angle rotational
space (a, B, y) yielding a factor of 87V fOr ZfransZro . The volume terms cancel the

chemical potential for a free species in equation 4, and are therefore given by:

C Internal

8 2
u;ﬁ,eﬁ—RTln[ T, J Eq. 5

Calculation and integration of the potential energy U and the solvation energy W over
the remaining 3N — 6 internal degrees of freedom where N is the number of atoms

comprising the species X, are hence left to be determined. This holds true for both the
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free ligand and the free receptor, but the theoretical considerations for the bound
ligand is more complicated. In the receptor-ligand complex the ligand is restricted in
its translational and rotational freedom by an external force effected by the receptor.
Therefore the integral over the 6 external degrees of freedom for the ligand in the
ligand-receptor complex must be calculated numerically as they are dependent on the
total complex. Under these circumstances, the standard chemical potential for the

receptor bound ligand becomes:

1 R R R L L L
auloiLfcomplex = _RTIHE_ z Z z z zZ Z j Eq 6

VC ° Trans Rot Internals Trans Rot Internals

where R and L denotes the partition functions of the receptor and ligand parts in the
bound complex. Presuming that the external degrees of freedom for the receptor are
not affected by the ligand, the integration over translation and rotation can for this
part of the partition function be done analytically, again yielding a factor of 87° ¥, this

leaves equation 6 to:

C Internals Trans Rot Internals

{r R L L L
aulo{L—camplex =_RT1n[ T[o z z z z J Eq 7

Given these equations the overall change in free energy upon ligand binding then

sums to Equation 8:

AGp, =g — Mg = Ky

87.[ 2 R,complex L,complex L,complex L,complex 87.[ 2 R, free 87.[ 2 L, free
AGy, =—RTIn z z z z |[+RTIn z |+RTIn z

C °  Internals  Trans Rot Internals C °  Internals C °  Internals

Provided a correct representation and sampling of PES, the above equation allows for
a correct calculation of AG for the ligand binding under the approximation of the

implicit treatment of the solvent.
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Approximating the PES by Harmonic Functions

Using the harmonic oscillator - rigid rotor approximation (HORRA), motion around
energy minima can be approximated by a harmonic energy profile centered at the
bottom of the energy well. A harmonic function gives a good local approximation and
has the advantage that all thermodynamic functions (e.g. entropy, free energy etc.) can
be calculated analytically by classical mechanics of a harmonic oscillator.' The
disadvantage is that the approximation is only valid locally around the base of the
energy well and that it is expensive in time to calculate for very large systems.
Furthermore, at higher temperatures the thermal energy of the system increases to a
level from the base of the minimum, making the approximation less precise. For drug
size molecules at relevant temperatures however, the harmonic approximation has
been shown to provide a fair sampling of the soft degrees of freedom on the potential
energy surface of the molecule.” Based upon this empiric knowledge, a formula for
U’ =—RTInZ , where Z is the configurational integral (equation 3) and the combined
energy provided by U and W (equal to E(r)), are the energy profile of the PES, which
needs to be estimated, can be derived. Dependent on the coordinate basis, a Jacobian
determinant can be necessary in order to account for the connection between the
external and internal coordinates.>” However, as only the torsions angles and not the
hard bond lengths and angles are considered, the Jacobian determinant is independent

of the internal coordinates’ and it was be omitted in the calculations.

If derived from a Taylor series expansion, the approximated harmonic energy profile

E(r), of the potential at the base of the energy well, r, takes the form:

E(r)=E(rO)+(a—Ej (r—ro)+l£az—Ej (r—r0)2+...
or )., 2 -

or’
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As the gradient, [aa—Ej (r - ro) at this point was equal to zero the PES harmonic
r r=ry

approximation was limited to the second order, hence the equation becomes:

2
E(r)=Er, )+1 0 f (r—n) Eq. 9
2\ or v

2
where (8 fj is the curvature of the PES at the bottom of the well, which can be

or

viewed as a force constant of a harmonic oscillator anchored at the base of the well.

The whole concept is illustrated in Fig. 1S.

Potential Energy Surface
Harmonic Approximation
®*  Low energy conformer Harmonic potential Harmonic potential

with low curvature i i
W curvature  poorgy with high curvature

Wyl

Form of the harmonic potential

Configurational freedom

Fig. 1S. A) The PES is approximated by harmonic potentials centered at the bottom of
the energy wells. For each conformer harmonic potentials are fitted to approximate
each degree of configurational freedom. B) Harmonic potentials with a high

curvature are used for narrow energy wells where the thermal energy is more
localized whereas softer curved harmonic potentials are used to model the broader

energy wells where the energy is more dispersed.
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Combination of this PES approximation with equation 1, allows the formal

requirements to calculate the chemical potential of the bound ligand to be developed.

Approximating AG by the Harmonic Oscillator Formalism
In cases were the internal degrees of freedom of the receptor are held fixed, like in
most docking applications, and when the desolvation energy of the receptor is omitted

the change in free energy of ligand binding can then be approximated by:

L,bound L,bound L,bound 87.[ 2 L, free
AGy =py,,, ~ My, =—RTIn| z z z |[+RTIn|—— = Equation 10

Trans Rot  Internals C °  Internals

Ignoring the internal degrees of freedom for the receptor is a crude approximation that
in effect sets this terms to zero.” In the case of the macro cyclic cyclodextrin molecule
the internal degrees of freedom are highly correlated and they therefore cannot be
easily treated, hence an approximation was applied.

The different factors in the partition function between the free and the bound ligand
complex dependent functions, as they all relate to the reference frame of the receptor.
The calculation of z74nsZroZinternar for the bound ligand must, therefore include
considerations of the cross correlations between translation, rotation and the internal
degrees of freedom. In practice, even the partition function for PES of the ligand
alone needs a range of additional approximations in order to make the calculation
feasible. For an extensive review of this subject see the review paper by Gilson et al.”,
but the most central is a way to approximate the configurational integral Z for both the
free and the bound ligand. As mentioned previously this can be done with the
HORRA across an ensemble of conformers that represent the relevant low energy

minima on the PES.
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Approximating the Chemical Potential of the Bound Ligand
The energy of the system is approximated as the potential energy and its energy
minima plus the harmonic potential describing the energy change as the system moves
away from each local energy minimum by the use of HORRA. The chemical potential
of a bound ligand in translation, rotation and torsion angle space r around a given
local energy minimum i on the potential energy surface is therefore given by Equation
11:
u, =-RTIn(Z,)
= —RTln.[exp(— G/RT )ir
= —RTIn [ exp[— (Ei p i ZkNE}'kArjArkj /RTJdr (eq. 11)
9 &
=—RT | exp[— (Ei risw EJAr AR + Z]YkE;kArjArk) /RTjdr
5 L i

where j and & runs over all degrees of freedom considered.
: .1 1 :
In matrix notation 527 ZkN E}’k Ar,Ar, = EArH(r)Ar , where H(r) is the second

derivative or Hessian matrix over all degrees of freedom; translational, rotational and
torsion angles. The Hessian is a symmetrical Ny, + 6 by Ny, + 6 matrix where Ny, 1S
the number of relevant torsional degrees of freedom. The Hessian matrix can be
diagonalized into a set of N, + 6 eigenvalues v; and a set of Ny, + 6 eigenvectors

23,5
e.

The off-diagonal elements are thereby eliminated and the remaining diagonal
elements have the form of a Gaussian function. The transformation from r into

eigenvector space, r — e therefore gives:
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W = —RTlnIexp[— (Ei +;Zj%m+6 vlefj/RTjde

~E-RTW ][ exp(—%vlelz /RTjde

YaRT Equation 12

The product of the N, + 6 eigenvalues equals the determinant of the Hessian matrix
with respect to the original torsional space. Back transformation from eigenvector to

Cartesian space: e — r gives us:

Mig, =~E; Equation 13

N +6
_RT ln[(2n'RT) J ,

2 det(H(r,))

which is the approximation to the chemical potential of the bound ligand
conformation 7 integrated over rotation, translation and torsion angle space. With the
translation in the x, y and z directions, rotation around the axis r, 7y, and 7. and

variation of N torsion angles ¢ the Hessian matrix becomes:
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*E  0'E  OE O’E ’E J’E O’E  OE O°E
o> axdy ooz oxor,  oxdr,  oxor, oxop,  oxdp,  oxdp,
O’E O°E 0E 0’E O0E  O'E 0’E  O'E O’E
oxdy @y oyoz  oyor, Qydr, ovor.  oyog, yog,  oydg,
0’E O0°E 0E 0*E  0*E  O*E ’E OE OE
ox0z yoz 0z 0z0r,  Ozor, Ozor, 0z0¢, 0z0¢, 0z0¢,,
’E  O’E  OE ’E  OE  OE *E  OE *E
oxdr, dyor, dzor,  or} Ordr, Oror. ondg, andg,  orod,
H,. - O’E OE JE O’E a%;: O’E ’E  OE OE
oxor,  dyor,  ozor, or.or, o, or, 0, or,0¢,  0r,0¢, Or,0¢y
0’E  O0’E  O°E o*E  O*E OE 0’E  0E O’E
Ox0r, Oyor, 0Ozor, oror, oror, or’ or.0¢,  0r.0¢, N or.0,
E E o&E OE PE g JOE JOE  JE
ox0f,  oyop,  ozof, Orod  Onoh  orog o4 0404, 04,00y
OE E  E OE  PE  QE  OE  E  JE
ox09,  oy0, 0z204, Oro¢, ordg, orog, 0409, 04" 0h.0py
’E OE  OE  pE  9E  OE  FE JE &L
| ox0gy  Ov0hy 0209y ordg, Or0¢, OnOby 009, 0,09, o8y |

This approximation is, however only valid if the Hessian matrix is positive, defined as
positive eigenvalues for all the structures representing the true minimum. Effectively,
this means that the energy gradient must be very close to zero so all force field energy
minimizations should be performed to a gradient below 10~ kcal/mol/A.

With the chemical potential defined as shown above, Boltzmann weighting of all
conformations of the ligand bound to the complex can be approximated with respect

to the overall chemical potential of the bound ligand.

Approximating the Chemical Potential of the Free Ligand

The derivation of the chemical potential for the free ligand, is similar to the
approximation of the bound ligand discussed above, though with the exception that
the external degrees of freedom are treated analytically. The chemical potential for the

free ligand therefore becomes:

Page S9
PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY




1
87-[2 Ei +E(¢_¢1)T HTorsion (¢_¢1)
— [exp| -
C RT

', ~E—-RTZ' =E ~RTh (0-¢.)

2 NTor.ritm
b - rr[ 3| BT [@aRT)
C1Q 2 det (H Torsion )

where Nz,si0n 1S the number of degrees of freedom (i.e. relevant torsion angles) and

Hrysion 18 the Hessian matrix for the torsion angles only. The Hessian matrix has the

form:
- azE azE B azE T
o9 04,09, 09,09,
0*E PE  OE
HTDrsiDnS = a(bza(bz a?zz . a¢28¢n
PE  OE  OE
| 09,04, 04,09, o, |

The joint chemical potential over all conformers representing PES can easily be
calculated with a Boltzmann weighting of the chemical potential of the individual
conformers. Based on these approximations to the chemical potentials of the ligand in
its bound and free form, AGyig-vinding for the formation of the complex can be
calculated as the difference between the two chemical potentials, and the likely

binding positions can be approximated.
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2. "TH-ROSEY NMR
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Fig. 2S. Partial ROESY spectrum of TDC and fCyD. The region of mostly bile salt

chemical shift is depicted at the x-axis and the region of CD chemical shift at the y-

axis (intermolecular region).
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Fig.3S. Partial ROESY spectrum of TCDC and pCyD. The region of mostly bile salt
chemical shift is depicted at the x-axis and the region of CD chemical shift at the y-

axis (intermolecular region).
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Fig.4S. Partial ROESY spectrum of TBMC and pCyD. The region of mostly bile salt
chemical shift is depicted at the x-axis and the region of CD chemical shift at the y-

axis (intermolecular region).
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