Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2009

Supporting Information

The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: Examples and a case study on the application of V_2O_4 coated nanotubes in gas sensing.

Marc-Georg Willinger,^{a,b} Giovanni Neri,^{*,c} Anna Bonavita,^c Giuseppe Micali,^c Erwan Rauwel,^a

Tobias Herntrich,^a and Nicola Pinna*,^{a,d}

^a Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

^b Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany.

^c Department of Industrial Chemistry and Materials Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy.

^d School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-744, Korea

Corresponding Author:

Giovanni Neri, FAX: (+39) 090 3977464, EMAIL: neri@ingegneria.unime.it

Nicola Pinna, FAX: (+351) 234401470, EMAIL: pinna@ua.pt

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2009

Fig. SI-1 Resistance trend of CNTs (a) and V_2O_4 -CNTs (V_2O_4 thickness 5 nm) (b,c,d) based sensors treated in air at a controlled heating rate.

Fig. SI-2 Resistance trend of the V_2O_4 -CNTs (V_2O_4 thickness 5 nm) sensor treated in nitrogen at a controlled heating rate.