Supplementary Information for

The photoelectron spectrum of CCl₂⁻: The convergence of theory and experiment after a decade of debate

Scott W. Wren, ^a Kristen M. Vogelhuber, ^a Kent M. Ervin, ^b W. Carl Lineberger*^a

^a JILA and Department of Chemistry and Biochemistry, University of Colorado, 440 UCB, Boulder, CO 80309, USA. E-mail: <u>wcl@jila.colorado.edu</u>

^bJILA Visiting Fellow, 2008; Permanent Address: Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, NV 89557-0216, USA.

I. Geometries, frequencies, and normal mode vectors used in simulations.

 Table S1
 Spectroscopic quantities and molecular constants used in the simulation of the
photoelectron spectrum of CCl₂⁻. All calculations for CCl₂⁻ and CCl₂⁻ used the Gaussian 03 software package and the CCSD(T)/aug-cc-pVTZ method and basis set.

		<i>r</i> /Å	$oldsymbol{ heta}$ /°	v_1 / cm^{-1}	x_{11} /cm ⁻¹	v_2 /cm ⁻¹	x_{22}/cm^{-1}	v_{3}/cm^{-1}
CCb-	Calculated	1.892	103.75	547.612		243.338		463.312
$X^2 \mathbf{B}_1$	Best Fit	1.90(2) ^{<i>a</i>}	104(2) ^{<i>a</i>}	547.612	0.0	243.338	0.0	463.312
CCl ₂	Calculated	1.729	109.02	728.652		333.692		758.091
$X^{1}A_{1}$	Experimental	1.714(1) ^b	109.3(1) ^b	731.14(22) ^{<i>c</i>}	-3.34(3) ^c	335.80(1) ^c	-0.305(8) ^c	745 ^d
CCl ₂	Calculated	1.684	127.40	681.635		296.845		992.617
$a^{3}B_{1}$	Best Fit	1.69(10)	127(10)	681.635	2.8	296.845	0.5	992.617

^{*a*} The "best fit" geometry reflects the geometry change between anion and neutral that yields the best agreement between the simulated and experimental spectra. Changing the anion harmonic frequencies has little effect on the simulated spectra; thus, the DFT computed frequencies were used.

 b LIF¹

^{*c*} Dispersed fluorescence² ^{*d*} Excitation matrix³

Table S2 J-Matrices and K-vectors extracted from the CCSD(T)/aug-cc-pVTZ output from
Gaussian 03 used in the simulation of CCl_2^- computed with PESCAL.

Oddb								
	J-Matrix				$\text{CCl}_2^-/\text{cm}^{-1}$	CCl ₂ /cm ⁻¹	K-Vector/(g/mol) ^{-1/2} Å	
CCl ₂	0.993	-0.114	0.000	<i>v</i> ₁	547.612	728.651	-0.660613	
$X^{1}\overline{A_{1}}$	0.141	0.993	0.000	v_2	243.337	333.692	-0.539615	
	0.000	0.000	0.996	v_3	463.312	758.090	0.000000	
CCl ₂	0.952	305	0.000	<i>v</i> ₁	547.612	681.634	-1.275341	
$a^{3}B_{1}$	0.305	0.952	0.000	v_2	243.337	296.844	0.476681	
	0.000	0.000	0.994	v_3	463.312	992.616	0.000000	

Table S3	Normal Mode	· Vectors of CCl2	extracted from t	he CCSD(T)	/aug-cc-pVTZ	output
from Gau	ssian 03.					

	\boldsymbol{v}_1	v_2	v_3
CC ¹	0.000	0.000	0.000
$\mathbf{Y}^{2}\mathbf{B}$	0.000	0.000	0.956
	0.963	-0.335	0.000
	0.000	0.000	0.000
	0.098	0.664	-0.164
	-0.165	0.057	0.129
	0.000	0.000	0.000
	-0.098	-0.664	-0.164
	-0.165	0.057	-0.129
CCh	0.000	0.000	0.000
$\mathbf{X}^{1}\mathbf{\Delta}$	0.000	0.000	0.958
	0.950	-0.480	0.000
	0.000	0.000	0.000
	0.149	0.615	-0.164
	-0.163	0.082	0.117
	0.000	0.000	0.000
	-0.149	-0.615	-0.164
	-0.163	0.082	-0.117
CCl ₂	0.000	0.000	0.000
$a^{3}\mathbf{R}_{1}$	0.000	0.000	0.965
	0.913	-0.672	0.000
	0.000	0.000	0.000
	0.241	0.511	-0.166
	-0.157	0.115	0.082
	0.000	0.000	0.000
	-0.241	-0.511	-0.166
	-0.157	0.115	-0.082

Table S4 Spectroscopic quantities and molecular constants used in the simulation of the photoelectron spectrum of CBr_2^- .

		<i>r</i> /Å	$oldsymbol{ heta}$ /°	v_1/cm^{-1}	x_{11} /cm ⁻¹	v_2 /cm ⁻¹	x_{22}/cm^{-1}	v_3 /cm ⁻¹
CBr_2^- V^2P	Calculated Best Fit	2.100 $2.09(2)^{a}$	106.36 105(4) ^a	455.786 455.786	0.0	129.655 129.655	0.0	365.775 365.775
$\frac{\mathbf{A} \mathbf{B}_1}{\mathbf{CBr}_2}$ $X^1 \mathbf{A}_1$	Calculated Experimental	1.911 1.865 ^b	110.68 110.7 ^b	589.1 606.6(4) ^c	-2.01(4) ^c	190.082 199.5 ^c	 -1.49(1) ^c	616.314 679.8(7) ^c
CBr_2	Calculated	1.839	129.5	533.6		185.4		878.7

a ³ \mathbf{B}_1

^{*a*} The "best fit" geometry reflects the geometry change between anion and neutral that yields the best agreement between the simulated and experimental spectra. Absolute geometries are determined using as reference the experimental LIF geometrical parameters⁴ of $CBr_2 X {}^1A_1$. Changing the anion harmonic frequencies has little effect on the simulated spectra; thus, the DFT computed frequencies were used.

^b Combined LIF⁴ and Theory⁵

^c Single Vibronic Level Emission⁶

		J-Matrix			CBr_2^-/cm^{-1}	CBr ₂ /cm ⁻¹	K-Vector/(g/mol) ^{-1/2} Å
CBr ₂	0.999	-0.044	0.000	<i>v</i> ₁	455.786	589.135	-0.797633
$X^{1}A_{1}$	0.044	0.999	0.000	v_2	129.655	190.081	-1.262737
	0.000	0.000	1.000	v_3	365.775	616.313	0.000000
CBr ₂	0.982	-0.188	0.000	v_1	455.786	509.051	-1.583948
$a^{3}B_{1}$	0.188	0.982	0.000	v_2	129.655	183.106	0.195075
<i>w D</i> ₁	0.000	0.000	0.997	v_3	365.775	830.998	0.000000

Table S5 J-Matrices and K-vectors extracted from the B3LYP/6-311++G** output from Gaussian 03 used in the simulation of CBr_2^- computed with PESCAL.

Table S6 Normal Mode Vectors of CBr_2^- computed with PESCAL using B3LYP/6-311++G** output.

	<i>v</i> ₁	v_2	<i>v</i> ₃
CBr ₂	0.000	0.000	0.000
$X^2 B_1$	0.000	0.000	0.991
	0.992	-0.388	0.000
	0.000	0.000	0.000
	0.048	0.651	-0.075
	-0.075	0.029	0.056
	0.000	0.000	0.000
	-0.048	-0.651	-0.075
	-0.075	0.029	-0.056
CBr ₂	0.000	0.000	0.000
$X^{1}A_{1}$	0.000	0.000	0.992
	0.991	-0.471	0.000
	0.000	0.000	0.000
	0.061	0.623	-0.075
	-0.075	0.036	0.052
	0.000	0.000	0.000
	-0.061	-0.623	-0.075
	-0.075	0.036	-0.052
CBr ₂	0.000	0.000	0.000
$a^{3}B_{1}$	0.000	0.000	0.993
	0.983	-0.677	0.000
	0.000	0.000	0.000
	0.105	0.518	-0.075
	-0.075	0.051	0.035
	0.000	0.000	0.000
	-0.105	-0.518	-0.075
	-0.075	0.051	-0.035

II. Expanded and enhanced figures.

Expanded view of CCl₂⁻ contaminated photoelectron spectrum

Fig S1 Expanded view of the overlapping spectral features in the contaminated CCl_2^- and the authentic $CDCl_2^-$ photoelectron spectra. The $CDCl_2^-$ spectrum was normalized to match the peak intensities of several common peaks in both spectra, which can be seen in the top portion of Fig. S1.

Expanded view of $CCl_2^- X^1A_1$ photoelectron spectrum

Fig. S2 Expanded view of $X^{1}A_{1}$ CCl₂⁻. All the resolved features are identified based on peak position, progression spacing, and agreement with the simulated spectrum. The inset is an expanded view of the cooled photoelectron spectrum with the corresponding simulation. The peak labels in red designate hot bands, and the solid arrows indicate the origin for $X^{1}A_{1}$ CCl₂.

CBr₂⁻ photoelectron spectrum

Fig. S3 Comparison of the best fit simulation and the corrected CBr_2^- spectrum, showing both the $a {}^{3}B_{1}$ and $X {}^{1}A_{1}$ states of CBr_2 . The $a {}^{3}B_{1}$ state is simulated using the electron affinity and vibrational frequencies calculated by Dyke *et al.*⁷ The Franck-Condon factors for both the singlet and triplet states are calculated in the Morse oscillator, parallel mode approximation using numerically integrated Laguerre polynomial wavefunctions.

References

- ¹ D. J. Clouthier and J. Karolczak, J. Chem. Phys., 1991, **94**, 1.
- ² M. L. Liu, C. L. Lee, A. Bezant, G. Tarczay, R. J. Clark, T. A. Miller, and B. C. Chang, *Phys. Chem. Chem. Phys.*, 2003, **5**, 1352.
- ³ V. E. Bondybey, *J. Mol. Spec.*, 1977, **64**, 180.
- ⁴ S. L. Xu and M. D. Harmony, J. Phys. Chem., 1993, **97**, 7465.
- ⁵ C. W. Bauschlicher, J. Am. Chem. Soc., 1980, **102**, 5492.
- ⁶ C. Tao, C. Mukarakate, and S. A. Reid, *J. Mol. Spec.*, 2007, **246**, 113.
- ⁷ E. P. F. Lee, J. M. Dyke, and T. G. Wright, *Chem. Phys. Lett.*, 2000, **326**, 143.