Modeling the Zn^{+2} binding in the $1-16$ region of the amyloid β peptide involved in Alzheimer's disease

Sara Furlan and Giovanni La Penna
National research council, Institute for chemistry of organo-metallic compounds, via Madonna del Piano 10, I-50019 Sesto fiorentino (Firenze), Italy.
E-mail: glapenna@iccom.cnr.it

March 27, 2009

Supplementary material

Trajectories:
The CP-MD trajectories of representative model ASP1 is provided in AMBER CRD format ($\mathrm{x}, \mathrm{y}, \mathrm{z}$ for each atom in \AA) and compressed using the program BZIP2. The PDB file ASP1 first.pdb contains the $t=0$ structure and the necessary information for graphical representation. A script file for VMD is also provided.

Parameters used for semiempirical models of $\mathrm{Zn}-\mathrm{A} \beta(1-16)$ complexes. No torsional parameters have been used (all parameters are set to zero). Atoms not indicated are those in the PARM94 Amber force-field. Atom type X indicates any possible atom involved.

Lennard-Jones parameters for Zn .
$\epsilon(\mathrm{ZN}-\mathrm{ZN})=0.25104 \mathrm{~kJ} / \mathrm{mol}$
$\sigma(\mathrm{ZN}-\mathrm{ZN})=3.296 \AA$
All the other atoms have the same Lennard-Jones parameters of the corresponding atoms in PARM94 force-field.
Table 1: Summary of atom types

PDB atom name	Atom type
Zn	ZN
$\mathrm{N} \delta 1$ (His 6, 14)	NB
$\mathrm{N} \epsilon 2$ (His 13)	NA
$\mathrm{O} \delta$ (Asp)	OA
$\mathrm{O} \epsilon$ (Glu)	OA
$\mathrm{O} \eta$ (Tyr)	OB

Table 2: Stretching parameters, energy contribution per pair is given by $U_{s t r}=k_{s t r} / 2\left(r-r_{e q}\right)^{2}$, with r the distance between atoms in the pair.

Pair	$k_{\text {str }}\left(\mathrm{kJ} \mathrm{mol}^{-1} \AA^{-2}\right)$	$r_{e q} \AA$
ZN-NA	3464.352	2.1
ZN-NB	3464.352	2.1
ZN-OA	3464.352	2.1
ZN-OB	3464.352	2.1

Table 3: Bending parameters, energy contribution per three atoms is given by $U_{b e n}=k_{b e n} / 2 \quad(\theta-$ $\left.\theta_{e q}\right)^{2}$, with θ the bending angle for the two bonds.

Atoms	$k_{\text {ben }}\left(\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{rad}^{-2}\right)$	$\theta_{\text {eq }}{ }^{\circ}$
X-Zn-X	0	-
X-NB-ZN	585.76	121.5
X-NA-ZN	585.76	121.5
X-OA-ZN	0	-
X-OB-ZN	0	-

Table 4: Point charges of Zn binding residues. All atoms not indicated have the standard PARM94 charges.

Atom	$q(e)$
Zn	0.5
His bonded to Zn via N ϵ 2 (His 13)	
$\mathrm{C} \beta$	-0.0191
$\mathrm{H} \beta$	0.0673
$\mathrm{C} \gamma$	0.2
$\mathrm{~N} \delta 1$	-0.3
$\mathrm{H} \delta 1$	0.3
$\mathrm{C} \epsilon 1$	0.32
$\mathrm{H} \epsilon 1$	0.036
$\mathrm{~N} \epsilon 2$	-0.3
$\mathrm{C} \delta 2$	0.1
$\mathrm{H} \delta 2$	0.036
His bonded to Zn via $\mathrm{N} \delta 1$ (His 6,14$)$	
$\mathrm{C} \beta$	0.01877
$\mathrm{H} \beta$	0.06287
$\mathrm{C} \gamma$	0.1
$\mathrm{~N} \delta 1$	-0.3
$\mathrm{C} \epsilon 1$	0.32
$\mathrm{H} \epsilon 1$	0.036
$\mathrm{~N} \epsilon 2$	-0.3
$\mathrm{H} \epsilon 2$	0.3
$\mathrm{C} \delta 2$	0.2
$\mathrm{H} \delta 2$	0.036

