The Effect of the NH₂ Substituent on NH₃: Hydrazine as an Alternative for Ammonia in Hydrogen Release in the Presence of Boranes and Alanes

Nguyen Vinh-Son,^{b,c} Saartje Swinnen,^b Myrna H. Matus,^a Minh Tho Nguyen*^{,a,b} and David A. Dixon*^{,a,1}

^aDepartment of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, AL 35487-0336

^bDepartment of Chemistry, University of Leuven, B-3001 Leuven, Belgium

^c Department of Chemistry, Hanoi National University of Education, 136 XuanThuy Street, Hanoi, Vietnam

Supporting Information Available. Optimized geometries (Cartesian coordinates and figures with selected parameters), CCSD(T) total energies, zero-point energies. Table S-1 lists the reaction Enthalpies and Free Energies. Table S-2 and S-3 show the Zero point energies (ZPE, kcal/mol) at MP2/aug-cc-pVDZ and CCSD(T) total energies (au) with the aVDZ, aVTZ basis sets for the points on the H₂-release pathway from N₂H₄ with a presence of borane, diborane, alane and dialane. Table S-4 lists the coordinates of all MP2/aVTZ optimized geometries. Figures S-1 and S-2 show the selected MP2/aug-cc-pVTZ geometry parameters for complexe and product for H₂-release from N₂H₄ with a presence of borane, diborane, alane and dialane.

¹ Email: dadixon@as.ua.edu

Reactions	ΔH	ΔG
$BH_3 + N_2H_4 \rightarrow BH_2NHNH_2 + H_2$ (b + hyz \rightarrow bhyz-p + H ₂)	-34.1	-32.7
$B_{2}H_{6} + N_{2}H_{4} \rightarrow BH_{2}NHNH_{2} + BH_{3} + H_{2}$ (db + hyz \rightarrow bhyz-p + b + H ₂)	4.4	7.8
$AlH_3 + N_2H_4 \rightarrow AlH_2NHNH_2 + H_2$ $(al + hyz \rightarrow alhyz-p + H_2)$	-16.8	-14.3
$Al_{2}H_{6} + N_{2}H_{4} \rightarrow Al_{2}H_{5}NHNH_{2} + H_{2}$ $(dal + hyz \rightarrow dalhyz-p + H_{2})$	-20.4	-17.6
$BH_{3}AlH_{3} + N_{2}H_{4} \rightarrow AlBH_{5}NHNH_{2} + H_{2}$ $(bal + hyz \rightarrow balhyz-p + H_{2})$	-3.8	-0.9

Table S-1: Reaction Enthalpies and Free Energies (kcal/mol) for H₂ elimination Reactions at MP2/aVDZ level.

Table S-2: Zero point energies (ZPE, kcal/mol) at MP2/aug-cc-pVDZ and MP2/aug-ccpVTZ, and CCSD(T) total energies (au) with the aVDZ, aVTZ basis sets for the points on the H₂-release pathway from hydrazine with a presence of borane and diborane.

Molecule	ZPE	E(MP2/aVTZ) ^a	E(CCSD(T)/aVDZ) ^a	E(CCSD(T)/aVTZ) ^a
$BH_3(\mathbf{b})$	16.67	-26.5150147	-26.5122640	-26.5390576
$N_2H_4\left(\mathbf{hyz}\right)$	33.62	-111.6767950	-111.6081220	-111.7112807
b + hyz	50.28	-138.1918097	-138.1203860	-138.2503383
$B_{2}H_{6}\left(\boldsymbol{db}\right)$	39.87	-53.1006631	-53.0885066	-53.1464202
db + hyz	73.49	-164.7774581	-164.6966286	-164.8577009
bhyz	55.21	-138.2499776	-138.1748963	-138.3070724
$\mathbf{b} + \mathbf{b}\mathbf{h}\mathbf{y}\mathbf{z}$	71.87	-164.7649923	-164.6871603	-164.8461300
dbhyz-com	74.37	-164.783066	-164.7030571	-164.8632920
dbhyz	75.82	-164.800436	-164.7204889	-164.8808392
bhyz-ts	51.16	-138.1851446	-138.1065475	-138.2398672
dbhyz-com-ts	74.66	-164.775863	-164.6954213	-164.8552817
dbhyz-ts	71.29	-164.754466	-164.6730815	-164.8333949
$\boldsymbol{bhyz}\textbf{-}\boldsymbol{p}+H_2$	47.29	-138.2455716	-138.1686549	-138.3022674
\mathbf{bhyz} - \mathbf{p} + \mathbf{b} + \mathbf{H}_2	63.96	-164.7605863	-164.6809189	-164.8413250

^a Based on MP2/aug-cc-pVTZ optimized geometries.

Table S-3: Zero point energies (ZPE, kcal/mol) at MP2/aug-cc-pVDZ and MP2/aug-cc-
pVTZ, and CCSD(T) total energies (au) with the aVDZ, aVTZ basis sets for the points on
the H_2 -release pathway from hydrazine with a presence of alane and dialane.

Molecule	ZPE	E(MP2/aVTZ) ^a	E(CCSD(T)/aVDZ) ^a	E(CCSD(T)/aVTZ) ^a
AlH_3 (al)	11.73	-243.7403261	-243.7397977	-243.7651104
$N_2H_4(\mathbf{hyz})$	33.62	-111.6767950	-111.6081220	-111.7112807
al + hyz	45.35	-355.4171211	-355.3479197	-355.4763911
$Al_{2}H_{6}\left(dal ight)$	27.76	-487.5396665	-487.5335392	-487.5895777
dal + hyz	61.39	-599.2164615	-599.1416612	-599.3008584
alhyz	48.40	-355.4662924	-355.3939515	-355.5254396
al + alhyz	60.14	-599.2066185	-599.1337492	-599.2905500
dalhyz	62.89	-599.247865	-599.1727911	-599.3321928
alhyz-ts	44.86	-355.4152408	-355.3376658	-355.4714282
dalhyz-ts	59.90	-599.212405	-599.1317249	-599.2937693
$alhyz\text{-}p+H_2$	41.81	-355.4469480	-355.3672124	-355.5033978
dalhyz-p + H_2	57.38	-599.2637824	-599.1814956	-599.3450937

^a Based on MP2/aug-cc-pVTZ optimized geometries.

Molecule	ZPE	E(MP2/aVTZ) ^a	E(CCSD(T)/aVDZ) ^a	E(CCSD(T)/aVTZ) ^a
AlH_3 (al)	11.73	-243.7403261	-243.7397977	-243.7651104
$BH_{3}N_{2}H_{4}\left(\boldsymbol{bhyz}\right)$	55.21	-138.2499776	-138.1748963	-138.3070724
$N_2H_4\left(\mathbf{hyz}\right)$	33.62	-111.6767950	-111.6081220	-111.7112807
BH ₃ AlH ₃ (bal)	33.40	-270.325378	-270.3156691	-270.3727211
bal + hyz	67.62	-382.0021725	-381.9237910	-382.0840017
al + bhyz	66.94	-381.9903037	-381.9146940	-382.0721828
balhyz	69.61	-382.02083	-381.9436210	-382.1028113
ts-balhyz	67.92	-381.9841234	-381.9083577	-382.0666163
balhyz-ts	66.80	-381.991311	-381.9078866	-382.0700692
balhyz-p + H_2	62.52	-382.0038754	-381.9216375	-382.0840201

Table S-4: Zero point energies (ZPE, kcal/mol) at MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ, and CCSD(T) total energies (au) with the aVDZ, aVTZ basis sets for the points on the H₂-release pathway from hydrazine with a presence of borane-alane.

Table S-5: Geometries of the Structures Considered Optimized at the MP2/aug-cc-pVTZ

Level of Theory, Given in Cartesian Coordinates (Å)

1.	bhyz	2. al	hyz		
Ν	0.042692 0.548716 0.002598	Ν	-0.644727	0.625839	-0.003654
Н	0.074294 1.098623 0.856840	Ν	-1.623058	-0.420958	0.127506
Ν	1.191725 -0.308406 -0.125800	Al	1.279920	-0.136875	-0.000837
Н	1.939858 0.046268 0.458858	Η	-0.775919	1.262470	0.775894
Н	0.054408 1.189569 -0.784396	Η	-2.486080	-0.143362	-0.324885
Н	0.893111 -1.202276 0.251724	Η	1.584552	-0.325039	1.550944
Н	-2.216569 0.547128 0.099930	Η	-0.760297	1.161504	-0.861002
В	-1.353843 -0.292497 0.005938	Η	2.013369	1.056320	-0.773654
Н	-1.254562 -1.000060 0.984365	Η	0.902967	-1.445015	-0.854989
Н	-1.362250 -0.898934 -1.034599	Η	-1.243049	-1.221666	-0.368390
3.	dbhyz	4. da	alhyz		
Ν	0.678167 0.322231 0.495546	Ν	-1.160431	-0.417004	0.633650
В	-0.418008 1.076359 -0.368546	Ν	-1.479652	-1.477975	-0.323334
Ν	1.485861 -0.679014 -0.179353	Al	-0.623541	1.348255	-0.163945
В	-1.838397 -0.634515 0.059993	Al	2.022725	-0.276850	-0.001324
Н	-0.885734 1.968957 0.269125	Η	-0.385946	-0.757666	1.211426
Н	-1.854995 -0.217693 1.185534	Η	1.507651	-0.339206	1.525850
Н	0.100099 1.376532 -1.412025	Η	-1.506729	1.376108	-1.481149
Н	-1.289042 0.250837 -0.791917	Η	-1.957611	-0.357547	1.262822
Н	0.221740 -0.151555 1.276270	Η	-0.694670	2.417502	0.996289
Н	1.330512 0.989967 0.899960	Η	1.400880	-1.497302	-0.841439
Н	-1.132461 -1.598276 -0.120870	Η	0.946800	0.999098	-0.579183
Н	-2.899024 -0.675237 -0.490189	Η	3.457612	0.290755	-0.339136
Н	1.726745 -0.246772 -1.068510	Η	-1.904435	-0.999648	-1.114865
Н	0.815990 -1.408499 -0.417959	Η	-0.572365	-1.795503	-0.664324
5.	bhyz-p	6. al	hyz-p		
Ν	-0.000000 0.454740 0.000000	Al	-1.201094	0.128109	0.000000
Ν	1.141603 -0.398969 -0.000000	Ν	0.460590	-0.534549	0.000000
В	-1.336462 0.070029 0.000000	Ν	1.709578	0.177629	0.000000
Н	1.080718 - 0.999430 - 0.813493	Η	1.745210	0.778909	-0.813969
Н	0.283484 1.420798 0.000000	Η	0.663337	-1.522690	0.000000
Н	1.080718 -0.999430 -0.813493	Η	1.745210	0.778907	0.813970
Н	-1.595496 -1.093444 -0.000000	Η	-1.336383	1.701253	-0.000001
Н	-2.158339 0.930962 0.000000	Н	-2.394330	-0.903363	0.000000
7.	dalhyz-p	8. bl	nyz-ts		
Ν	0.000000 0.582749 0.574043	Ν	-0.052753	-0.535080	0.002795
Ν	0.000002 1.905575 -0.044223	Ν	-1.287438	0.167077	-0.063011
Al	1.350893 -0.672358 -0.103405	В	1.295843	0.276655	-0.125121
Al	-1.350894 -0.672356 -0.103405	Η	0.806157	-0.233968	1.044164
Н	-1.962594 -1.590373 1.024156	Η	-1.594052	0.385748	0.877427
Н	2.136932 0.055539 -1.267230	Η	-0.103734	-1.394593	-0.518710
Н	0.000000 0.739858 1.574947	Η	-1.131625	1.049077	-0.540763

Η	1.962591	-1.590376	1.024156	Н	1.586120	0.339917	1.195846
Η	-0.000001	-1.534753	-0.804723	Н	1.155464	1.422693	-0.433455
Η	-2.136932	0.055541	-1.267231	Н	2.183787	-0.376133	-0.577391
Η	0.811195	1.963782	-0.652152				
Η	-0.811196	1.963787	-0.652145				
9. a	lhyz-ts			10. c	lbhyz-ts		
Al	1.206749	0.155319	-0.046762	Ν	0.640643	0.255599	0.481151
Ν	-0.560332	-0.590907	-0.130500	Ν	1.501772	-0.710687	-0.137441
Ν	-1.709173	0.272413	-0.064753	В	-0.121788	1.241023	-0.309086
Η	0.073819	-0.593546	1.112415	В	-1.907664	-0.538654	-0.104513
Η	-1.943187	0.433099	0.910358	Η	-0.682069	-0.440529	0.851353
Η	-0.822232	-1.452906	-0.588540	Η	-1.327346	-1.263147	-0.855446
Η	-1.463402	1.174427	-0.457761	Η	-0.470069	2.215054	0.281402
Η	0.793921	-0.227798	1.683009	Н	1.067491	0.578969	1.337765
Η	1.210719	1.726168	-0.221913	Н	0.003850	1.226423	-1.491933
Η	2.349162	-0.849130	-0.462894	Н	-1.471310	-0.740609	1.135989
				Н	-1.681059	0.663550	-0.284365
				Н	-3.061397	-0.767103	0.103010
				Н	1.852769	-0.304931	-0.998975
				Н	0.919494	-1.493902	-0.416777
11.	dalhyz-ts			12. d	lbhyz-com-t	ts	
Ν	1.033889	-0.399225	0.570235	Ν	0.909384	-0.619531	-0.012216
Al	0.738600	1.309963	-0.120347	Ν	2.002836	0.296934	-0.100369
Al	-1.953342	-0.182389	-0.121124	В	-0.788659	0.560418	-0.030221
Η	-0.612205	-0.758602	1.238149	В	-2.477413	-0.154054	0.026140
Η	-1.459261	-1.269860	-1.144742	Н	-2.995336	-0.497408	-0.990110
Η	0.859387	2.467121	0.953883	Н	-2.913581	-0.491255	1.082515
Η	1.518923	-0.479933	1.455899	Н	-0.447831	1.040322	1.007570
Ν	1.482281	-1.510158	-0.247194	Н	-1.302693	-0.664471	-0.026913
Η	1.063994	1.437096	-1.666004	Н	-2.237549	1.058319	0.009605
Н	-1.357359	-0.854961	1.532788	Н	-0.489365	1.033470	-1.078331
Η	-1.091900	1.209006	-0.162538	Н	0.919121	-1.157932	0.849099
Η	-3.434949	0.035550	0.359621	Н	0.971185	-1.257482	-0.797415
Η	2.031229	-1.147958	-1.020716	Н	1.665430	1.177009	0.276268
Η	0.660602	-1.930244	-0.668501	Н	2.775435	-0.014214	0.476210
13.	dbhyz-com			14. t	s-balhyz		
Ν	-1.346757	0.758156	0.066974	Ν	1.642578	-0.639392	-0.010783
Ν	-2.044050	-0.456222	-0.246228	Ν	2.708516	0.309360	-0.096321
В	1.310994	-0.740879	0.208880	В	-0.123687	0.502144	-0.037801
В	2.580186	0.396781	-0.159348	Al	-2.398406	-0.043949	0.013386
Н	2.957337	0.499368	-1.278856	Н	-3.009426	-0.538312	-1.357196
Н	-1.425540	0.991266	1.051185	Н	-2.927829	-0.532079	1.420739
Н	1.277545	0.518585	-0.141739	Н	0.180838	0.969676	1.015489
Н	3.040632	1.044683	0.721191	Н	-0.700388	-0.611945	-0.030587
Н	2.622297	-0.864891	0.181742	Н	-1.595644	1.368440	-0.009382
Н	-1.790314	1.499105	-0.459204	Н	0.158009	0.968249	-1.092992

Н	0.946220	-0.850970	1.332820	Η	1.663351	-1.173111	0.852642
Н	0.857302	-1.401852	-0.666029	Η	1.728928	-1.278527	-0.791851
Н	-2.818592	-0.612778	0.388658	Η	2.348116	1.178285	0.283655
Н	-1.387141	-1.215561	-0.122647	Η	3.494094	0.020160	0.474201
15.	balhyz-ts			16. b	oalhyz		
Ν	0.960374	-0.124631	0.490219	Ν	1.135663	-0.333640	0.290628
Ν	2.199190	-0.341321	-0.208138	Ν	2.407993	-0.196296	-0.362925
В	0.137514	1.068901	-0.018754	В	0.255565	0.997113	0.126006
Al	-1.727739	-0.168231	-0.061040	Al	-2.086238	-0.176448	-0.086171
Н	0.001589	-1.179272	-0.058337	Н	0.841722	1.888558	0.677645
Н	-2.825634	0.118984	-1.154138	Н	0.613236	-1.088545	-0.163392
Н	-0.784774	1.281166	0.785421	Н	-0.759404	0.790634	0.803119
Н	1.154936	-0.146134	1.483017	Н	0.051530	1.152942	-1.041500
Н	0.692783	2.099276	-0.260466	Н	-2.800579	-0.440393	1.311826
Н	-0.613946	-1.561417	-0.551429	Н	1.232000	-0.564474	1.278043
Н	-0.373189	0.676409	-1.085897	Н	-2.767107	0.763960	-1.158897
Η	-2.082772	-0.746715	1.364058	Η	-1.161849	-1.398311	-0.594145
Н	2.479716	0.539338	-0.631777	Н	2.719318	0.751365	-0.177113
Н	2.007383	-0.977472	-0.977733	Н	3.068818	-0.837922	0.060685
17.	balhyz-p						
Ν	1.222264	-0.368348	-0.365019				
Ν	2.451409	-0.059195	0.293037				
В	0.090292	0.539645	-0.251094				
Al	-2.004705	-0.086453	0.110783				
Н	-3.073377	1.058361	0.023398				
Н	-0.601982	0.430020	0.922432				
Н	1.083887	-1.365819	-0.351949				
Н	0.295381	1.713756	-0.315838				
Н	-0.797225	0.214812	-1.126307				
Н	-2.223729	-1.635336	0.258254				
Н	2.267202	0.385173	1.186831				
Н	2.943834	0.617508	-0.277659				

Figure S-1. Selected MP2/aVTZ geometry parameters of adducts, transition states and products related to the reaction $BH_3 + N_2H_4$ (**b** + **hyz**) and $B_2H_6 + N_2H_4$ (**db** + **hyz**). Bond distances in angstroms and bond angles in degrees.

Figure S-2. Selected MP2/aVTZ geometry parameters of adducts, transition states and products related to the reaction $AlH_3 + N_2H_4$ (al + hyz) and $Al_2H_6 + N_2H_4$ (dal + hyz). Bond distances in angstroms and bond angles in degrees.

Figure S-3. Selected MP2/aVTZ geometry parameters of adducts, transition states and products related to the reaction $BH_3AIH_3 + N_2H_4$ (bal + hyz). Bond distances in angstroms and bond angles in degrees.

