## Electronic Supplementary Information (ESI) for "Absorption and fluorescence properties of oligothiophene biomarkers from long-range-corrected time-dependent density functional theory"

Bryan M. Wong  $*^{a}$ , Manuel Piacenza<sup>b</sup>, and Fabio Della Sala<sup>b</sup>

<sup>a</sup> Materials Chemistry Department, Sandia National Laboratories, Livermore, California 94551, USA

<sup>b</sup> National Nanotechnology Laboratory of CNR-INFM, Distretto Tecnologico ISUFI, Università del Salento,

Via per Arnesano, I-73100 Lecce, Italy

\*Corresponding author. E-mail: bmwong@sandia.gov.

## Contents

**p.** S3 – S4, Fig. ESI-1:  $S_1 \leftarrow S_0$  and  $S_2 \leftarrow S_0$  excitation energies as a function of the LC-BLYP range parameter  $\mu$  for all 12 oligothiophene biomarkers

**p.** S5 – S6, Fig. ESI-2:  $S_1 \leftarrow S_0$  and  $S_2 \leftarrow S_0$  excitation energies as a function of the HF exchange fraction  $a_0$  for all 12 oligothiophene biomarkers

**p.** S7 – S8, Fig. ESI-3:  $S_1 \rightarrow S_0$  fluorescence energies as a function of the LC-BLYP range parameter  $\mu$  for all 12 oligothiophene biomarkers

**p.** S9 – S10, Fig. ESI-4:  $S_1 \rightarrow S_0$  fluorescence energies as a function of the HF exchange fraction  $a_0$  for all 12 oligothiophene biomarkers

**p. S11, Table ESI-1:** BHHLYP and LC-BLYP<sub> $\mu=0.47$ </sub> S<sub>1</sub>/S<sub>2</sub>  $\leftarrow$  S<sub>0</sub> excitation energies and oscillator strengths for the bithiophene systems

**p. S12, Table ESI-2:** BHHLYP and LC-BLYP<sub> $\mu=0.47$ </sub> S<sub>1</sub>/S<sub>2</sub>  $\leftarrow$  S<sub>0</sub> excitation energies and oscillator strengths for

**p. S13, Table ESI-3:** BHHLYP and LC-BLYP<sub> $\mu=0.47$ </sub> S<sub>1</sub>  $\rightarrow$  S<sub>0</sub> fluorescence energies and oscillator strengths for all 12 oligothiophene biomarkers



**Fig. ESI-1 (a)** – (f)  $S_1 \leftarrow S_0$  and  $S_2 \leftarrow S_0$  vertical excitation energies as a function of the LC-BLYP range parameter  $\mu$ . The horizontal lines represent the CC2/ATZVP excitation energies, and the curved lines denote the TDDFT LC-BLYP/ATZVP calculations. The solid lines denote  $S_1 \leftarrow S_0$  excitation energies while dashed lines represent  $S_2 \leftarrow S_0$  excitations.



**Fig. ESI-1 (g)** – (**l) (continued)**  $S_1 \leftarrow S_0$  and  $S_2 \leftarrow S_0$  vertical excitation energies as a function of the LC-BLYP range parameter  $\mu$ . The horizontal lines represent the CC2/ATZVP excitation energies, and the curved lines denote the TDDFT LC-BLYP/ATZVP calculations. The solid lines denote  $S_1 \leftarrow S_0$  excitation energies while dashed lines represent  $S_2 \leftarrow S_0$  excitations.



**Fig. ESI-2 (a)** – (f)  $S_1 \leftarrow S_0$  and  $S_2 \leftarrow S_0$  vertical excitation energies as a function of the HF exchange fraction  $a_0$  in a B3LYP-like functional. The horizontal lines represent the CC2/ATZVP excitation energies, and the curved lines denote the TDDFT B3LYP/ATZVP calculations. The solid lines denote  $S_1 \leftarrow S_0$  excitation energies while dashed lines represent  $S_2 \leftarrow S_0$  excitations.



**Fig. ESI-2 (g)** – (1)  $S_1 \leftarrow S_0$  and  $S_2 \leftarrow S_0$  vertical excitation energies as a function of the HF exchange fraction  $a_0$  in a B3LYP-like functional. The horizontal lines represent the CC2/ATZVP excitation energies, and the curved lines denote the TDDFT B3LYP/ATZVP calculations. The solid lines denote  $S_1 \leftarrow S_0$  excitation energies while dashed lines represent  $S_2 \leftarrow S_0$  excitations.



**Fig. ESI-3 (a)** – (f)  $S_1 \rightarrow S_0$  fluorescence energies as a function of the LC-BLYP range parameter  $\mu$ . The horizontal line represents the CC2/ATZVP excitation energy, and the curved line denotes the TDDFT LC-BLYP/ATZVP calculations.



**Fig. ESI-3 (g)** – (I) (continued)  $S_1 \rightarrow S_0$  fluorescence energies as a function of the LC-BLYP range parameter  $\mu$ . The horizontal line represents the CC2/ATZVP excitation energy, and the curved line denotes the TDDFT LC-BLYP/ATZVP calculations.



**Fig. ESI-4 (a)** – (f)  $S_1 \rightarrow S_0$  fluorescence energies as a function of the HF exchange fraction  $a_0$  in a B3LYP-like functional. The horizontal line represents the CC2/ATZVP excitation energy, and the curved line denotes the TDDFT B3LYP/ATZVP calculations.



**Fig. ESI-4 (g)** – (l)  $S_1 \rightarrow S_0$  fluorescence energies as a function of the HF exchange fraction  $a_0$  in a B3LYP-like functional. The horizontal line represents the CC2/ATZVP excitation energy, and the curved line denotes the TDDFT B3LYP/ATZVP calculations.

**Table ESteric BPPImetry Materal (DBESP**  $_{\mu=0.47}$  S<sub>1</sub>/S<sub>2</sub>  $\leftarrow$  S<sub>0</sub> excitation energies and oscillator strengths for the bithiophene systems. All properties were computed with the ATZVP basis on B3LYP/TZVP-optimized geometries.

|                                          | BHHLYP         |                         | LC-BLYP ( $\mu = 0.47$ ) |                          |               |
|------------------------------------------|----------------|-------------------------|--------------------------|--------------------------|---------------|
| System                                   | State          | $E_{\rm abs}({\rm eV})$ | Osc. strength            | $E_{\rm abs}~({\rm eV})$ | Osc. strength |
| NS-[2T]                                  | $S_1$          | 3.82                    | 0.64                     | 4.05                     | 0.63          |
|                                          | $S_2$          | 4.93                    | 0.02                     | 5.10                     | 0.03          |
| NS-[2T]- $S_{\alpha}$                    | $\mathbf{S}_1$ | 3.73                    | 0.79                     | 3.97                     | 0.77          |
|                                          | $S_2$          | 4.66                    | 0.01                     | 5.04                     | 0.01          |
| NS-[2T]-S $_{\beta}$                     | $\mathbf{S}_1$ | 3.72                    | 0.53                     | 3.96                     | 0.55          |
|                                          | $S_2$          | 4.30                    | 0.06                     | 4.76                     | 0.03          |
| BC-[2T]                                  | $\mathbf{S}_1$ | 3.96                    | 0.53                     | 4.20                     | 0.51          |
|                                          | $S_2$          | 5.01                    | 0.01                     | 5.06                     | 0.01          |
| BC-[2T]-S <sub><math>\alpha</math></sub> | $\mathbf{S}_1$ | 3.83                    | 0.67                     | 4.08                     | 0.65          |
|                                          | $S_2$          | 4.74                    | 0.00                     | 5.00                     | 0.01          |
| BC-[2T]-S $_{\beta}$                     | $\mathbf{S}_1$ | 3.83                    | 0.45                     | 4.08                     | 0.45          |
|                                          | $S_2$          | 4.52                    | 0.02                     | 4.94                     | 0.02          |

**Table EStronic BPPIM Provide 12 Constant Sector**  $S_1/S_2 \leftarrow S_0$  excitation energies and oscillator strengths for the terthiophene systems. All properties were computed with the ATZVP basis on B3LYP/TZVP-optimized geometries.

|                                          | BHHLYP         |                          | LC-BLYP ( $\mu = 0.47$ ) |                          |               |
|------------------------------------------|----------------|--------------------------|--------------------------|--------------------------|---------------|
| System                                   | State          | $E_{\rm abs}~({\rm eV})$ | Osc. strength            | $E_{\rm abs}~({\rm eV})$ | Osc. strength |
| NS-[3T]                                  | $\mathbf{S}_1$ | 3.26                     | 1.02                     | 3.55                     | 1.00          |
|                                          | $S_2$          | 4.36                     | 0.00                     | 4.62                     | 0.00          |
| NS-[3T]-S <sub><math>\alpha</math></sub> | $\mathbf{S}_1$ | 3.23                     | 1.17                     | 3.53                     | 1.14          |
|                                          | $S_2$          | 4.28                     | 0.01                     | 4.54                     | 0.01          |
| NS-[3T]-S <sub><math>\beta</math></sub>  | $\mathbf{S}_1$ | 3.22                     | 0.98                     | 3.51                     | 0.96          |
|                                          | $S_2$          | 4.23                     | 0.02                     | 4.53                     | 0.02          |
| BC-[3T]                                  | $\mathbf{S}_1$ | 3.36                     | 0.94                     | 3.65                     | 0.90          |
|                                          | $S_2$          | 4.45                     | 0.00                     | 4.71                     | 0.00          |
| BC-[3T]-S <sub><math>\alpha</math></sub> | $\mathbf{S}_1$ | 3.28                     | 1.07                     | 3.58                     | 1.03          |
|                                          | $S_2$          | 4.34                     | 0.01                     | 4.60                     | 0.01          |
| BC-[3T]-S <sub><math>\beta</math></sub>  | $\mathbf{S}_1$ | 3.25                     | 0.85                     | 3.54                     | 0.82          |
|                                          | $S_2$          | 4.31                     | 0.01                     | 4.58                     | 0.01          |

**Table ESTIM**: Superconstraints for all 12 oligothiophene biomarkers. All properties were computed with the ATZVP basis on TDDFT B3LYP/TZVP-optimized geometries of the  $S_1$  state.

|                                          | BHHLYP                  |               | LC-BLYP                 | $(\mu = 0.47)$ |
|------------------------------------------|-------------------------|---------------|-------------------------|----------------|
| System                                   | $E_{\rm fl} ({\rm eV})$ | Osc. strength | $E_{\rm fl} ({\rm eV})$ | Osc. strength  |
| NS-[2T]                                  | 3.20                    | 0.64          | 3.32                    | 0.62           |
| NS-[2T]-S <sub><math>\alpha</math></sub> | 3.04                    | 0.76          | 3.22                    | 0.74           |
| NS-[2T]-S $_{\beta}$                     | 3.12                    | 0.57          | 3.25                    | 0.56           |
| BC-[2T]                                  | 3.17                    | 0.53          | 3.31                    | 0.51           |
| BC-[2T]-S <sub><math>\alpha</math></sub> | 3.00                    | 0.67          | 3.18                    | 0.65           |
| BC-[2T]-S <sub><math>\beta</math></sub>  | 3.25                    | 0.50          | 3.41                    | 0.49           |
| NS-[3T]                                  | 2.73                    | 1.05          | 2.92                    | 1.00           |
| NS-[3T]-S <sub><math>\alpha</math></sub> | 2.65                    | 1.21          | 2.88                    | 1.16           |
| NS-[3T]-S $_{\beta}$                     | 2.68                    | 0.99          | 2.89                    | 0.97           |
| BC-[3T]                                  | 2.72                    | 0.96          | 2.91                    | 0.91           |
| BC-[3T]-S <sub><math>\alpha</math></sub> | 2.63                    | 1.12          | 2.84                    | 1.06           |
| BC-[3T]-S <sub><math>\beta</math></sub>  | 2.65                    | 0.88          | 2.85                    | 0.84           |