Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals

Electronic Supplementary Information

Lars Goerigk,^{*a,b*} Jonas Moellman^{*a*} and Stefan Grimme^{*a*}

^a Theoretische Organische Chemie Organisch-Chemisches Institut der Universität Münster Corrensstraße 40 D-48149 Münster, Germany

> ^b NRW Graduate School of Chemistry Corrensstraße 36 D-48149 Münster, Germany

E-Mail: grimmes@uni-muenster.de Phone: (+49)-251-8336512

February 27, 2009

_

1 COMPLETE DATA FOR THE ORGANIC MOLECULE BENCHMARK SET

1 Complete data for the organic molecule benchmark set

Table S1 contains the complete data for the organic molecule benchmark set for the functionals BP86, B3-LYP, B2-LYP, B2-PLYP, B2GP-LYP and B2GP-PLYP.

Molecule	State	$\operatorname{Reference}^{b}$	BP86	B3-LYP	B2-LYP	B2-PLYP	B2GP-LYP	B2GP-PLYP
Ethene	$1^{1}B_{1u}(\pi \to \pi^*)$	8.54	-0.81	-0.84	-0.87	-0.70	-0.88	-0.67
E-butadiene	$2^1 A_g(\pi \to \pi^*)$	6.62	-0.32	0.20	1.05	0.57	1.26	1.02
	$1^1 B_u(\pi \to \pi^*)$	6.47	-0.87	-0.73	-0.53	-0.50	-0.47	-0.42
All-E-hexatriene	$2^1 A_q (\pi \to \pi^*)$	5.42	-0.35	0.27	1.33	0.55	1.71	0.83
	$1^1 B_u(\pi \to \pi^*)$	5.31	-0.80	-0.62	-0.36	-0.38	-0.29	-0.28
All-E-octatetraene	$2^1 A_g(\pi \to \pi^*)$	4.64	-0.45	0.20	1.28	0.50	1.65	0.95
	$1^1 B_u(\pi \to \pi^*)$	4.70	-0.88	-0.68	-0.40	-0.44	-0.31	-0.33
Cyclopropene	$1^1 B_2(\pi \to \pi^*)$	7.06	-0.93	-0.75	-0.56	-0.45	-0.51	-0.35
	$1^1 B_1(\sigma \to \pi^*)$	6.76	-0.46	-0.30	0.03	-0.10	0.16	0.00
Cyclopentadiene	$2^1 A_1(\pi \to \pi^*)$	6.31	-0.22	0.21	0.98	0.34	1.26	0.52
	$3^1A_1(\pi \to \pi^*)$	8.52	-0.48	-0.37	-0.23	-0.21	-0.19	-0.15
	$1^1B_2(\pi \to \pi^*)$	5.51	-0.59	-0.49	-0.36	-0.28	-0.33	-0.20
Norbonadiene	$1^1 A_2(\pi \to \pi^*)$	5.34	-0.86	-0.55	-0.17	-0.20	-0.08	-0.06
	$2^1 A_2(\pi \to \pi^*)$	7.45	-0.89	-0.59	-0.01	-0.25	0.18	-0.09
	$1^1 B_2(\pi \to \pi^*)$	6.11	-1.09	-0.59	0.17	-0.19	0.41	0.02
	$2^1 B_2(\pi \to \pi^*)$	7.32	-0.71	-0.45	-0.09	-0.19	0.03	-0.10
Benzene	$1^1 B_{1u}(\pi \to \pi^*)$	6.42	-0.42	-0.32	-0.28	-0.13	-0.30	-0.07
	$1^1 B_{2u}(\pi \to \pi^*)$	5.04	0.20	0.36	0.62	0.19	0.69	0.19
	$1^1 E_{1u}(\pi \to \pi^*)$	7.13	-0.17	-0.06	0.15	-0.02	0.23	0.03
	$1^1 E_{2g}(\pi \to \pi^*)$	8.18	0.10	0.73	1.58	0.91	1.78	1.22
Napthalene	$2^1 A_g(\pi \to \pi^*)$	5.87	-0.02	0.31	0.80	0.24	0.95	0.31
	$3^1 A_g(\pi \to \pi^*)$	6.67	-0.47	0.18	1.09	0.50	1.34	0.77
	$1^1 B_{2u}(\pi \to \pi^*)$	4.77	-0.70	-0.42	-0.10	-0.17	-0.04	-0.04
	$2^1_1B_{2u}(\pi \to \pi^*)$	6.33	-0.45	-0.21	0.10	-0.10	0.20	-0.03
	$3^1 B_{2u}(\pi \to \pi^*)$	8.17	-0.64	-0.30	0.33	-0.16	0.58	-0.02
	$1^{1}B_{3u}(\pi \to \pi^{*})$	4.24	-0.01	0.20	0.49	0.09	0.58	0.11
	$2^{1}B_{3u}(\pi \to \pi^{*})$	6.06	-0.33	-0.13	0.17	-0.08	0.27	-0.01
	$3^{1}B_{3u}(\pi \to \pi^{*})$	7.74	0.26	0.91	1.75	1.08	1.94	1.46
	$1^{1}B_{1g}(\pi \to \pi^{*})$	5.99	-0.95	-0.41	0.32	0.09	0.42	0.24
_	$2^{1}B_{1g}(\pi \to \pi^*)$	6.47	-0.30	-0.15	0.23	-0.27	0.51	-0.13
Furan	$2^1A_1(\pi \to \pi^*)$	6.50	-0.12	0.20	0.76	0.17	0.96	0.27
	$3^{1}A_{1}(\pi \to \pi^{*})$	8.17	-0.01	0.08	0.26	0.19	0.32	0.25
	$1^1 B_2(\pi \to \pi^*)$	6.39	-0.28	-0.23	-0.17	-0.07	-0.17	-0.01
Pyrrole	$2^{1}A_{1}(\pi \rightarrow \pi^{*})$	6.31	-0.05	0.22	0.66	0.17	0.80	0.24
	$3^1A_1(\pi \to \pi^*)$	8.17	-0.32	-0.21	-0.01	-0.12	0.05	-0.06
x · 1 1	$1^1 B_2(\pi \to \pi^*)$	6.33	0.01	0.07	0.15	0.20	0.15	0.25
Imidazole	$2^{1}A'(\pi \to \pi^{*})$	6.19	0.09	0.26	0.46	0.40	0.50	0.49
	$3^{+}A'(\pi \rightarrow \pi^{*})$	6.93	-0.07	0.11	0.44	0.05	0.55	0.11
	$4^{+}A^{\prime}(\pi \rightarrow \pi^{+})$	8.16	-0.04	0.11	0.31	-0.10	0.45	0.14
	$1^{-}A^{\prime\prime}(n \rightarrow \pi^{+})$	0.81	-0.91	-0.35	0.33	-0.08	0.50	0.10
Demidina	$2^{-}A^{-}(n \rightarrow \pi^{*})$ $2^{1}A^{-}(\pi \rightarrow \pi^{*})$	7.90	-0.72	-0.45	0.37	-0.31	0.70	-0.21
ryndine	$2 A_1(\pi \to \pi^*)$	0.39	-0.18	-0.08	-0.03	0.11	-0.05	0.17
	$J^{1} P_{-} (\pi \rightarrow \pi^{*})$	1.40 5.00	-0.19	-0.14	0.11	-0.07	0.10	-0.02
	$D_2(\pi \to \pi^*)$ $D^1 P_2(\pi \to \pi^*)$	0.02 7.97	0.33	0.47	0.71	0.28	0.77	0.28
		1.41	-0.14	0.03	0.31	0.04	0.41	0.09
	$1 D_1(n \to \pi^*)$ $1^1 A_2(n \to \pi^*)$	0.17 5 51	1 09	-0.37	0.17	-0.22	0.34	-0.08
Pyrazine	$1^{1}B_{1n}(\pi \to \pi^{*})$	6.89	-0.48	-0.40 -0.39	-0.36	-0.18	-0.39	-0.12
		0.00	0.10	0.00	0.00	0.10	0.00	··

Table S1 - Computed^a vertical singlet excitation energies ΔE (in eV) of all 28 molecules in the organic molecule benchmark set.

1 COMPLETE DATA FOR THE ORGANIC MOLECULE BENCHMARK SET

Molecule	State	$\operatorname{Reference}^{b}$	BP86	B3-LYP	B2-LYP	B2-PLYP	B2GP-LYP	B2GP-PLYP
	$2^1 B_{1u}(\pi \to \pi^*)$	7.79	-0.26	-0.11	0.11	-0.05	0.17	0.00
	$1^1 B_{2u}(\pi \to \pi^*)$	4.85	0.40	0.52	0.68	0.31	0.73	0.30
	$2^1 B_{2u}(\pi \to \pi^*)$	7.66	0.09	0.12	0.50	0.10	0.63	0.17
	$1^1 A_u(n \to \pi^*)$	4.70	-0.64	-0.01	0.97	0.09	1.31	0.29
	$1^1 B_{1g}(n \to \pi^*)$	6.41	-0.84	-0.03	1.37	0.00	1.88	0.25
	$1^1 B_{2g}(n \to \pi^*)$	5.68	-0.57	-0.13	0.37	0.05	0.50	0.20
	$1^1 B_{3u}(n \to \pi^*)$	4.12	-0.54	-0.16	0.32	-0.01	0.46	0.11
Pyrimidine	$2^1 A_1(\pi \to \pi^*)$	6.63	-0.17	-0.05	0.03	0.13	0.03	0.19
	$3^1A_1(\pi \to \pi^*)$	7.21	0.11	0.27	0.53	0.29	0.63	0.35
	$1^1 B_2(\pi \to \pi^*)$	5.24	0.35	0.50	0.76	0.28	0.83	0.28
	$2^1B_2(\pi \to \pi^*)$	7.64	-0.06	0.12	0.34	0.06	0.44	0.11
	$1^1 B_1(n \to \pi^*)$	4.44	-0.64	-0.17	0.48	-0.07	0.70	0.08
	$1^1 A_2(n \to \pi^*)$	4.80	-0.77	-0.20	0.65	-0.08	0.93	0.12
Pyridazine	$2^{1}A_{1}(\pi \to \pi^{*})$	5.18	0.28	0.43	0.66	0.19	0.73	0.19
	$3^{1}A_{1}(\pi \rightarrow \pi^{*})$	7.62	-0.23	-0.12	0.16	-0.07	0.25	-0.02
	$1^{-}B_2(\pi \to \pi^+)$ $2^{1}B_2(\pi \to \pi^*)$	0.31	0.01	0.12	0.15	0.33	0.11	0.40
	$2^{-}B_2(\pi \to \pi^*)$ $1^1A_2(\pi \to \pi^*)$	1.29	-0.19	-0.05	0.18	-0.03	0.20	0.03
	$1 A_2(n \to \pi)$ $2^1 A_2(n \to \pi^*)$	4.31 5 77	-0.77	-0.13	0.79	0.04	0.50	0.30
	$2 A_2(n \rightarrow \pi)$ $1^1 B_1(n \rightarrow \pi^*)$	3.78	-0.70	-0.33	0.35	-0.27 -0.02	0.53	-0.17
	$1 D_1(n \to \pi)$ $2^1 B_1(n \to \pi^*)$	6.52	-0.03 -1.07	-0.20 -0.43	0.57	-0.02 -0.34	0.55	-0.13
s-triazine	$2^{1} A'_{\prime} (\pi \rightarrow \pi^{*})$	7.25	-0.38	-0.24	-0.13	-0.10	-0.13	-0.04
o unazine	$1^1 A'_2(\pi \to \pi^*)$	5 79	0.16	0.35	0.69	0.05	0.80	0.05
	$1^{1}E'(\pi \rightarrow \pi^{*})$	7.50	0.13	0.29	0.58	0.30	0.69	0.36
	$1^1 A_1''(n \to \pi^*)$	4.60	-0.76	-0.15	0.79	-0.10	1.10	0.08
	$1^1 A_2''(n \to \pi^*)$	4.66	-0.58	-0.12	0.56	-0.02	0.80	0.13
	$1^{1}E^{2'}(n \to \pi^{*})$	4.70	-0.71	-0.16	0.64	-0.05	0.90	0.12
	$2^1 E^{\prime\prime} (n \to \pi^*)$	7.71	-1.00	-0.22	0.79	0.08	1.09	0.34
s-tetrazine	$1^1 A_u(n \to \pi^*)$	3.51	-0.64	0.00	0.96	0.11	1.27	0.34
	$2^1 A_u (n \to \pi^*)$	5.50	-0.90	-0.46	0.16	-0.29	0.36	-0.16
	$1^1 B_{1g}(n \to \pi^*)$	4.73	-0.60	0.00	0.65	0.29	0.81	0.49
	$2^1 B_{1g}(n \to \pi^*)$	6.45	-0.58	0.19	1.39	0.08	1.86	0.25
	$3^1_{1g}(n \to \pi^*)$	6.73	-0.20	0.67	2.65	0.34	3.38	0.70
	$1^1 B_{2g}(n \to \pi^*)$	5.20	-0.41	0.09	0.64	0.22	0.79	0.38
	$2^1 B_{2g}(n \to \pi^*)$	6.06	-0.82	-0.07	1.33	-0.06	1.84	0.21
	$2^1 B_{3g}(\pi \to \pi^*)$	8.34	0.38	0.96	1.66	0.94	1.83	1.22
	$1^{1}B_{1u}(\pi \to \pi^{*})$	6.94	-0.12	-0.04	-0.08	0.20	-0.16	0.28
	$2^{1}B_{1u}(\pi \to \pi^{*})$	7.42	-0.06	0.06	0.30	0.06	0.39	0.12
	$1^{+}B_{2u}(\pi \rightarrow \pi^{+})$ $2^{1}B(\pi \rightarrow \pi^{+})$	4.93	0.53	0.05	0.82	0.34	0.87	0.32
	$2 D_{2u}(\pi \to \pi)$ $1^1 P_{\pi}(\pi \to \pi^*)$	0.14	-0.05	0.12	0.45 0.47	0.08	0.57	0.10
	$1 D_{3u}(n \rightarrow \pi)$ $2^1 B_0(n \rightarrow \pi^*)$	2.23	-0.44	-0.05	0.47	0.03	0.02	0.22
Formaldehyde	$2 D_{3u}(n \rightarrow \pi^*)$ $1^1 A_0(n \rightarrow \pi^*)$	3 99	-0.19	-0.40	0.03	-0.51 -0.14	0.00	-0.03
ronnaidenyde	$1^{1}B_{1}(\sigma \rightarrow \pi^{*})$	9.14	-0.34	-0.25	-0.04	-0.14	0.03	-0.11
	$2^1 A_1(\pi \to \pi^*)$	9.32	0.63	-0.15	-0.03	0.07	-0.04	0.13
Acetone	$1^1 A_2(n \to \pi^*)$	4.44	-0.23	-0.10	0.13	-0.13	0.21	-0.08
	$2^{1}A_{1}(\pi \to \pi^{*})$	9.31	-0.55	-0.27	-0.31	-0.61	-0.19	-0.38
	$1^1 B_1(\sigma \to \pi^*)$	9.27	-1.12	-0.67	-0.18	-0.42	-0.05	-0.30
p-benzoquinone	$1^1 A_u(n \to \pi^*)$	2.77	-0.74	-0.19	0.48	-0.05	0.67	0.12
	$1^1 B_{1g}(n \to \pi^*)$	2.76	-0.86	-0.33	0.33	-0.15	0.53	0.01
	$1^1 B_{1u}(\pi \to \pi^*)$	5.28	-0.79	-0.45	0.07	-0.21	0.24	-0.07
	$2^1 B_{1u}(\pi \to \pi^*)$	7.92	-1.10	-0.67	-0.16	-0.29	0.00	-0.13
	$1^1 B_{3g}(\pi \to \pi^*)$	4.26	-0.90	-0.53	0.05	-0.08	0.23	0.11
	$2^{1}B_{3g}(\pi \to \pi^*)$	6.96	-0.84	-0.37	0.42	-0.13	0.70	0.08
D · ·	$1^1 B_{3u}(n \to \pi^*)$	5.64	-1.25	-0.21	1.27	-0.03	1.71	0.44
Formamide	$1^{\perp}A^{\prime\prime}(n \to \pi^*)$	5.63	-0.17	-0.08	0.17	-0.14	0.27	-0.09
	$2^{+}A'(\pi \rightarrow \pi^{*})$	7.39	0.51	0.74	0.47	-0.24	0.69	0.01
A 1	$3^+A'(\pi \to \pi^+)$	10.54	0.44	0.38	0.86	0.39	1.04	0.49
Acetamide	$1^- A^- (n \to \pi^+)$ $2^1 A'(\pi^- \pi^+)$	0.69 7.97	-0.28	-0.13	0.20	-0.16	U.33 0.02	-0.11
		10.00	0.23	0.19	0.92	0.01	0.93	0.12
Droponomido	$ \begin{array}{c} \mathbf{J} \mathbf{A} (\pi \to \pi^*) \\ \mathbf{I}^1 \mathbf{A}''(\pi \to \pi^*) \end{array} $	5 79	0.07	-0.08	0.00	-0.10	0.07	0.01
i ropanamide	$2^{1}A'(\pi \rightarrow \pi^{*})$	0.72 7.90	-0.29 0.08	-0.15 0.56	0.20	-0.17 -0.20	0.55 0.08	-0.12
	$2 21 (n \rightarrow n)$	1.40	0.00	0.00	0.10	0.40	0.30	0.10

1 COMPLETE DATA FOR THE ORGANIC MOLECULE BENCHMARK SET

Molecule	State	$\operatorname{Reference}^{b}$	BP86	B3-LYP	B2-LYP	B2-PLYP	B2GP-LYP	B2GP-PLYP
	$3^1 A'(\pi \to \pi^*)$	9.94	-1.77	-0.94	0.22	-0.39	0.58	-0.11
Cytosine	$2^1 A'(\pi \to \pi^*)$	4.67	-0.47	-0.03	0.56	-0.02	0.74	0.11
•	$3^1 A'(\pi \to \pi^*)$	5.53	-0.61	-0.11	0.70	-0.07	0.97	0.09
	$4^1 A'(\pi \to \pi^*)$	6.40	0.09	0.32	0.63	0.11	0.81	0.19
	$5^1 A'(\pi \to \pi^*)$	6.97	-0.60	-0.51	0.55	-0.29	0.90	-0.12
	$1^1 A^{\prime\prime}(n \to \pi^*)$	5.12	-1.33	-0.36	0.59	-0.15	0.86	0.04
	$2^1 A^{\prime\prime}(n \to \pi^*)$	5.53	-1.04	-0.42	0.73	0.11	0.93	0.26
Thymine	$2^1 A'(\pi \to \pi^*)$	5.06	-0.46	-0.06	0.45	0.08	0.60	0.22
	$3^1 A'(\pi \to \pi^*)$	6.15	-0.82	-0.18	0.86	0.09	1.13	0.32
	$4^1 A'(\pi \to \pi^*)$	6.53	-0.68	-0.22	0.59	-0.20	0.96	-0.03
	$5^1 A'(\pi \to \pi^*)$	7.43	-0.50	0.04	0.80	-0.08	1.09	0.14
	$1^1 A^{\prime\prime}(n \to \pi^*)$	4.95	-0.86	-0.25	0.40	-0.19	0.59	-0.05
	$2^1 A^{\prime\prime}(n \to \pi^*)$	6.38	-1.58	-0.58	0.36	-0.23	0.56	-0.07
	$3^1 A^{\prime\prime}(n \to \pi^*)$	6.85	-1.52	-0.64	1.01	-0.68	1.63	-0.11
	$4^1 A^{\prime\prime}(n \to \pi^*)$	7.43	-1.30	-0.74	0.74	-0.77	1.29	-0.49
Uracil	$2^1 A'(\pi \to \pi^*)$	5.23	-0.47	-0.04	0.48	0.07	0.62	0.20
	$3^1 A'(\pi \to \pi^*)$	6.15	-0.94	-0.28	0.84	-0.12	1.19	0.21
	$4^1 A'(\pi \to \pi^*)$	6.74	-0.73	-0.24	0.55	-0.12	0.88	-0.01
	$5^1 A'(\pi \to \pi^*)$	7.42	-0.36	0.03	0.73	-0.03	0.99	0.09
	$1^1 A^{\prime\prime}(n \to \pi^*)$	4.91	-0.94	-0.28	0.41	-0.20	0.61	-0.04
	$2^1 A^{\prime\prime}(n \rightarrow \pi^*)$	6.28	-1.52	-0.54	0.38	-0.23	0.59	-0.05
	$3^1 A^{\prime\prime}(n \to \pi^*)$	6.98	-1.74	-0.84	0.90	-0.81	1.51	-0.32
	$4^1 A^{\prime\prime}(n \to \pi^*)$	7.28	-1.17	-0.64	0.77	-0.82	1.35	-0.50
Adenine	$2^1 A'(\pi \to \pi^*)$	5.20	-0.21	0.07	0.31	-0.02	0.44	0.06
	$3^1 A'(\pi \to \pi^*)$	5.29	-0.72	-0.29	0.41	-0.10	0.55	0.03
	$4^1 A'(\pi \to \pi^*)$	6.34	-0.50	-0.02	0.57	0.12	0.72	0.27
	$5^1 A'(\pi \to \pi^*)$	6.64	-0.37	0.05	0.40	-0.18	0.63	0.02
	$6^1 A'(\pi \to \pi^*)$	6.87	-0.22	0.21	0.48	-0.10	0.68	0.07
	$7^1 A'(\pi \to \pi^*)$	7.56	-0.65	-0.04	0.21	-0.42	0.46	-0.31
	$1^1 A^{\prime\prime}(n \to \pi^*)$	5.19	-0.89	-0.22	0.69	-0.08	0.98	0.12
	$2^1 A^{\prime\prime}(n \to \pi^*)$	5.96	-0.91	-0.35	0.44	-0.21	0.69	-0.02

^aThe differences between results and references are shown. The results were obtained with the TZVP basis set. ^bCASPT2/TZVP (see Ref. [20]).

2 Ground state geometries of the organic dye benchmark set

This section contains the electronic ground state geometries of the five molecules in the organic molecule benchmark set. They were obtained at the RI-PBE/TZVP level of theory. The coordinates are given in the standard *TURBOMOLE* format.

RI-PBE/TZVP optimized structure of coumarin 153 (1)

\$	cc	ი	r	d
Ψ		0	÷.	u

4	1.01557277164234	4.49129636431285	0.06188954974193	с
2	2.59401485445041	2.01549498832286	0.07924781837098	с
3	3.88016607200719	-0.33927379015785	0.11390699407797	с
6	6.48946535547568	-0.41000086390850	0.09705831863882	n
7	7.94484417064227	1.90039410488319	0.49662533491728	с
6	5.72856758543468	4.13201680234655	-0.85536496516974	с
-(0.04424107904196	2.01224832697194	0.06165309179965	с
-1	L.50212426715539	-0.23585941191907	0.03960710994359	с
-().15583644145209	-2.54149781563847	0.06370019271657	с
2	2.45322711839317	-2.64128955923113	0.12092327605482	с
-4	1.19959314327368	0.04503593332055	0.00265637332315	с
-5	5.30511588043156	2.38038193763009	-0.01060660174829	с
-3	3.82343070500378	4.67695812147465	0.01883710646257	С
-1	L.17196230230311	4.34729270710546	0.05986714935835	0
7	7.85017129022474	-2.78692100132785	0.43180169348070	С
e	6.46963680392111	-4.97273660546300	-0.83483602549677	С
3	3.79429132728674	-5.16302069085760	0.23067518808494	С
-5	5.87999699719117	-2.27821770339259	-0.02954106752126	С
-4	1.61455320419499	6.82985791414538	0.01326929791170	0
g	9.74411418593158	-2.54090967551548	-0.39465817705939	h
8	3.12278672711753	-3.20060646206820	2.46964908738083	h
-1	L.19520457246355	-4.32105412452064	0.05421823228242	h
-7	7.34545290143348	2.62376485696882	-0.04152352797483	h
-5	5.49151173250505	-3.75871326132849	2.04741658806261	f
-8	3.37366798183493	-1.69207352272784	-0.06953541106832	f
-5	5.42268253727562	-3.75132100243704	-2.09756079794448	f
8	3.12317334848876	2.31050707114223	2.54484459684157	h
g	9.86564115258804	1.56119588598988	-0.22656252504038	h
2	2.68561880451126	-6.59181878580590	-0.79558085226734	h
3	3.89551372249725	-5.81262983836239	2.21275218949782	h
6	6.40482608037497	-4.64534491122287	-2.88986987071482	h
7	7.52526909367123	-6.73470627395386	-0.51593590848702	h
7	7.85088564742974	5.84789566937283	-0.51461427803544	h
6	5.75038534058127	3.77375341866695	-2.90600209330297	h

3.00903871310977	5.86486783833983	-1.12724075555016	h
4.01459618559262	5.30984127109230	1.98182189135085	h

\$end

RI-PBE/TZVP optimized structure of oxazine 9 (2)

\$coord

6.48262754805472	5.06710813676903	-0.00018410109922	n
4.71469671365625	3.23469350004797	-0.00017883072891	с
5.44971686449833	0.58008987825655	0.00034060045185	с
3.52841441539193	-1.30941375445507	-0.00030929530672	с
0.87840750587983	-0.57880865938216	-0.00002191196455	с
0.30579085155969	2.06798123767513	-0.00064491894159	с
2.14421975449051	3.92109713362541	-0.00043788352403	с
8.00421272143430	-0.19184799820432	0.00092871504164	С
4.21720834365952	-3.87989776614867	-0.00006215917872	С
-0.93533792512793	-2.32747866026992	-0.00101155697276	n
1.58084465929573	5.90456366895882	-0.00081023840135	h
5.98155644603358	6.91729640979627	-0.00052892988122	h
8.35538247342193	4.67262534658663	-0.00001715895372	h
8.64425223638350	-2.73372771557460	0.00111938615815	С
6.74158688615329	-4.58480316774273	0.00060222942173	С
9.53769377326859	1.18783488956377	0.00132662149696	h
10.62882887768949	-3.29010535451559	0.00168533682533	h
7.25122070079245	-6.58243544764453	0.00079245510036	h
2.71864142388389	-5.29287999258839	-0.00043521082096	h
-3.36325340021570	-1.55733381113444	-0.00134223917153	с
-5.37314641475407	-3.34463612219682	-0.00102401507747	с
-7.84335588090102	-2.56374010625289	-0.00051786508202	с
-8.46717695799320	0.07203456892136	0.00076554899631	с
-6.50824708500189	1.88967814478833	0.00007017076231	С
-4.03707582922996	1.06171531105767	0.00002039403573	С
-4.87758668528779	-5.34499146846703	-0.00180618622914	h
-9.36983439483192	-3.95125934446337	-0.00028980800904	h
-10.92065386924768	0.79147844378975	0.00207070077491	n
-6.91804835343827	3.91009185612570	0.00082974400210	h
-2.15099247030053	2.83535835130730	-0.00060152783444	0
-11.42437847373042	2.63985762408323	0.00281931392095	h
-12.33142262022795	-0.50461422153558	0.00206937720623	h

\$end

RI-PBE/TZVP optimized structure of 6,6'-diffuoro-indigo (3)

\$coord	l
---------	---

2.80305031849428	2.73387057781318	0.00000000000000	с
1.35368136507302	0.15470827963369	0.00000000000000	с
2.90682245934818	-1.76423981815936	0.0000000000000000000000000000000000000	n

5.40589021679978	-0.77632668388430	0.0000000000000	С
5.47623044914895	1.88148108497219	0.0000000000000	с
7.75243995628494	3.18516197580274	0.0000000000000	с
10.00504606793493	1.78475810616407	0.0000000000000	с
9.87692910056042	-0.85073403415211	0.0000000000000	с
7.60317636459244	-2.21090522824228	0.0000000000000	с
-1.35368136507302	-0.15470827963369	0.0000000000000	с
-2.90682245934818	1.76423981815936	0.0000000000000	n
-5.40589021679978	0.77632668388430	0.0000000000000	С
-5.47623044914895	-1.88148108497219	0.0000000000000	С
-2.80305031849428	-2.73387057781318	0.0000000000000	С
-7.75243995628494	-3.18516197580274	0.0000000000000	С
-10.00504606793493	-1.78475810616407	0.0000000000000	С
-9.87692910056042	0.85073403415211	0.0000000000000	С
-7.60317636459244	2.21090522824228	0.0000000000000	С
-12.06656173340738	2.16998278553654	0.0000000000000	f
-1.95654761617987	-4.86550147051408	0.0000000000000	0
12.06656173340738	-2.16998278553655	0.0000000000000	f
1.95654761617987	4.86550147051408	0.0000000000000	0
-7.57983800056685	4.27061148671628	0.0000000000000	h
-11.85062699777944	-2.70007572007877	0.0000000000000	h
-7.79089549794873	-5.24835374960916	0.0000000000000	h
7.57983800056685	-4.27061148671629	0.0000000000000	h
11.85062699777944	2.70007572007877	0.0000000000000	h
7.79089549794873	5.24835374960916	0.0000000000000	h

\$end

<code>RI-PBE/TZVP</code> optimized structure of (E)-(2-phenylazo-phenyl)
bis(pentafluoro-phenyl)
borane $({\bf 4})$

\$coord

-1.02399222185099	4.93567143452011	8.09588190510166	С
-1.21780738944468	2.28947501221068	8.26342720419553	с
-0.93087841861627	0.73411675251576	6.13634122294932	с
-0.39782807802520	1.82040741166886	3.79865106972662	с
-0.22566763242552	4.48828520128147	3.67817877571723	с
-0.52664880597917	6.07847071850455	5.78158602377421	с
-0.06846026102877	0.79357777784018	0.95465339240917	b
0.31795459702810	5.41253595900533	1.28963052639141	n
0.42273784260408	3.57690955069461	-0.30004541085378	n
1.11564474417259	4.14095155709506	-2.82843890599028	с
0.84469776692889	2.26389490999388	-4.68323078811101	с
1.50610394316699	2.80006014296531	-7.17598433612008	с
2.44204671024830	5.18129665234991	-7.83056311551345	с
2.71662902659465	7.04293848213147	-5.96914884745638	с
2.06411939327073	6.53741369791348	-3.47335216924120	с

-2.79779801473067	-0.41198625468400	0.15444882331411	с
2.43920717282221	-0.92084691103777	0.41630467648662	с
4.72007280703340	-0.35384472237224	1.66198639993411	с
6.95049969682882	-1.76066875083619	1.36048652972624	с
6.95796040665326	-3.82696462609293	-0.30428977480313	с
4.74287352626178	-4.44370543513826	-1.62785728839815	с
2.55806398552288	-2.97925033788933	-1.26083518936287	с
-3.44288449548374	-2.80619765935753	1.11515535638100	с
-5.77445873348693	-3.98474295957977	0.67585307189950	с
-7.62819639523052	-2.69569005787895	-0.72328482817254	с
-7.09147208589486	-0.28357307116383	-1.68252459848391	с
-4.72347979801095	0.82244681276133	-1.19130808046532	с
4.85334168032036	1.65469266750801	3.22590823621811	f
9.05898281587290	-1.13378824047401	2.60330331469155	f
9.05533921092091	-5.18811150630122	-0.63276454830656	f
4.73616072162524	-6.39508358926938	-3.23307944588988	f
0.52273657211452	-3.65333089687710	-2.65106517142891	f
-1.74349950346004	-4.10361154631328	2.51648220083203	f
-4.38195740366062	3.18282635179142	-2.10080962378557	f
-8.84696909601963	0.96821246776465	-3.00081406106574	f
-9.87215590125430	-3.76688068108238	-1.15007776815550	f
-6.26453473914806	-6.28379597209698	1.60232287043075	f
-1.26699704727940	6.08860826492518	9.78778914986409	h
-1.60097653193275	1.42887553108494	10.10021503953498	h
-1.12396249817683	-1.31125939108506	6.32025705556859	h
-0.37779545888124	8.12469174242964	5.57652714627645	h
0.11385471799403	0.40511656351220	-4.18999104346497	h
1.28609052733833	1.34101330743442	-8.61612866060838	h
2.96358250890829	5.58730487004231	-9.78412842406357	h
3.45849068451017	8.90167654067216	-6.46727806809265	h
2.27327088858841	7.96351041529203	-2.00424937005804	h

\$end

RI-PBE/TZVP optimized structure of the perylene-3,4,9,10-tetra carboxylic bisimide $({\bf 5})$

\$coord

0.0	000000000000000000000000000000000000000	0.0000000000000	-13.52999711477639	с
2.2	29278640965126	0.0000000000000	-14.83045886303911	С
2.2	28738517555910	0.0000000000000	-17.46881791506840	С
0.0	000000000000000000000000000000000000000	0.0000000000000	-18.78915130254424	С
2.2	28738517555910	0.00000000000000	-17.46881791506840	с
2.2	29278640965126	0.00000000000000	-14.83045886303911	с
4.0	06477031264146	0.00000000000000	-13.77627582738347	h
4.0	07673711009647	0.00000000000000	-18.49457118238795	h
0.0	000000000000000000000000000000000000000	0.0000000000000	-20.85191458122839	h

4.07673711009647	0.000000000000000	-18.49457118238795	h
4.06477031264146	0.000000000000000	-13.77627582738347	h
0.00000000000000	0.0000000000000000000000000000000000000	-10.79107430308213	n
0.00000000000000	-2.37560597726343	-9.56504945553020	С
0.00000000000000	2.37560597726343	-9.56504945553020	с
0.00000000000000	-2.31781156263666	-6.76141403548590	с
0.00000000000000	0.000000000000000	-5.41756576971729	с
0.00000000000000	0.000000000000000	-2.70722979514586	С
0.00000000000000	-2.36077181180116	-1.38560593704135	С
0.00000000000000	-4.60019589743217	-2.79923802604705	с
0.00000000000000	-4.58598116560458	-5.43908797024770	с
0.00000000000000	2.31781156263666	-6.76141403548590	с
0.00000000000000	2.36077181180116	-1.38560593704135	с
0.00000000000000	-2.36077181180116	1.38560593704135	С
0.00000000000000	-6.42398846574838	-1.84430967702928	h
0.00000000000000	-6.34814375021264	-6.50969412612313	h
0.00000000000000	-4.34556110374009	-10.78281924096273	0
0.00000000000000	4.34556110374009	-10.78281924096273	0
0.00000000000000	4.60019589743217	-2.79923802604705	С
0.00000000000000	4.58598116560458	-5.43908797024770	С
0.00000000000000	6.34814375021264	-6.50969412612313	h
0.00000000000000	6.42398846574838	-1.84430967702928	h
0.00000000000000	-4.60019589743217	2.79923802604705	с
0.00000000000000	-4.58598116560458	5.43908797024770	с
0.00000000000000	-2.31781156263666	6.76141403548590	с
0.00000000000000	0.00000000000000	5.41756576971729	с
0.00000000000000	0.00000000000000	2.70722979514586	с
0.00000000000000	-6.42398846574838	1.84430967702928	h
0.00000000000000	-6.34814375021264	6.50969412612313	h
0.00000000000000	-2.37560597726343	9.56504945553020	С
0.00000000000000	2.31781156263666	6.76141403548590	С
0.00000000000000	2.36077181180116	1.38560593704135	С
0.00000000000000	4.58598116560458	5.43908797024770	С
0.00000000000000	4.60019589743217	2.79923802604705	С
0.00000000000000	6.42398846574838	1.84430967702928	h
0.00000000000000	6.34814375021264	6.50969412612313	h
0.00000000000000	2.37560597726343	9.56504945553020	С
0.00000000000000	0.000000000000000	10.79107430308213	n
0.00000000000000	4.34556110374009	10.78281924096273	0
0.00000000000000	-4.34556110374009	10.78281924096273	0
0.0000000000000	0.0000000000000000000000000000000000000	13.52999711477639	с
-2.29278640965126	0.0000000000000000000000000000000000000	14.83045886303911	с
-2.28738517555910	0.0000000000000000000000000000000000000	17.46881791506840	С
0.00000000000000	0.0000000000000000000000000000000000000	18.78915130254424	С
2.28738517555910	0.000000000000000	17.46881791506840	С

2.29278640965126	0.00000000000000	14.83045886303911	С
-4.06477031264146	0.00000000000000	13.77627582738347	h
-4.07673711009647	0.00000000000000	18.49457118238795	h
0.0000000000000000	0.00000000000000	20.85191458122839	h
4.07673711009647	0.00000000000000	18.49457118238795	h
4.06477031264146	0.000000000000000	13.77627582738347	h
\$end			

S10