Supplementary information

Second-order optical properties of inorganic metal clusters [MoS₄Cu₄X₂Py₂] (M= Mo, W; X= Br, I)

Qiaohong Li,^{*a*} Kechen Wu,^{**a*} Yongqin Wei,^{*a*} Rongjian Sa,^{*a*} Yiping Cui,^{**b*} Canggui Lu^{*b*} and Jing Zhu,^{*b*} and Jiangang He^{*a*}

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China.

^{*a*}Fujian Institute of Research on the Structure of Matter.

^b Advanced Photonics Center, Southeast University.

Contents

$WS_4Cu_4Br_2Py_6(1)$				$WS_4Cu_4I_2Py_6(2)$			
	x	у	Z.		X	у	Z.
W	0.0000	0.0000	0.0382	W	0.0000	0.0000	0.0599
Br	4.1627	-1.6029	1.6927	Ι	4.2407	-1.6659	1.9338
Br	-4.1627	1.6029	1.6927	Ι	-4.2407	1.6659	1.9338
Cu	1.6653	2.1881	0.0014	Cu	2.2284	-1.6596	0.1242
Cu	2.2106	-1.6600	0.0963	Cu	-1.6550	-2.2008	0.0158
Cu	-1.6653	-2.1881	0.0014	Cu	-2.2284	1.6596	0.1242
Cu	-2.2106	1.6600	0.0963	Cu	1.6550	2.2008	0.0158
S	1.8694	0.2225	-1.2324	S	0.2410	-1.8772	1.3128
S	-0.2373	1.8791	1.2961	S	-0.2410	1.8772	1.3128
S	-1.8694	-0.2225	-1.2324	S	-1.8737	-0.2277	-1.2035
S	0.2373	-1.8791	1.2961	S	1.8737	0.2277	-1.2035
Ν	1.6464	3.6967	-1.4459	Ν	2.8637	-3.0970	-1.2005
Ν	3.2515	2.7441	1.1566	Ν	3.2436	2.7669	1.1551
Ν	2.8448	-3.1249	-1.1974	Ν	1.5849	3.7166	-1.4141
Ν	-1.6464	-3.6967	-1.4459	Ν	-2.8637	3.0970	-1.2005
Ν	-3.2515	-2.7441	1.1566	Ν	-3.2436	-2.7669	1.1551
Ν	-2.8448	3.1249	-1.1974	Ν	-1.5849	-3.7166	-1.4141
С	2.2479	3.4887	-2.6389	С	2.0068	-3.5784	-2.1256
С	2.3908	4.4867	-3.6005	С	2.3823	-4.5054	-3.0957
С	1.8981	5.7653	-3.3264	С	3.7062	-4.9483	-3.1312
С	1.2742	5.9907	-2.0966	С	4.6024	-4.4424	-2.1864
С	1.1694	4.9360	-1.1921	С	4.1442	-3.5283	-1.2395
С	4.3357	1.9465	1.2814	С	4.3690	2.0207	1.2010
С	5.4577	2.3134	2.0241	С	5.4872	2.3894	1.9481
С	5.4740	3.5518	2.6669	С	5.4549	3.5776	2.6784
С	4.3518	4.3782	2.5505	С	4.2911	4.3531	2.6410
С	3.2698	3.9376	1.7935	С	3.2156	3.9126	1.8748
С	1.9937	-3.6537	-2.1015	С	2.1992	3.5490	-2.6070
С	2.3855	-4.5989	-3.0468	С	2.3068	4.5658	-3.5535
С	3.7210	-5.0074	-3.0794	С	1.7632	5.8200	-3.2632
С	4.6102	-4.4535	-2.1547	С	1.1288	6.0041	-2.0319
С	4.1349	-3.5256	-1.2294	С	1.0609	4.9330	-1.1430
С	-2.2479	-3.4887	-2.6389	С	-2.0068	3.5784	-2.1256
С	-2.3908	-4.4867	-3.6005	С	-2.3823	4.5054	-3.0957
С	-1.8981	-5.7653	-3.3264	С	-3.7062	4.9483	-3.1312
С	-1.2742	-5.9907	-2.0966	С	-4.6024	4.4424	-2.1864
С	-1.1694	-4.9360	-1.1921	С	-4.1442	3.5283	-1.2395

1. Table 1S. Cartesian coordinates (Å) of three model clusters, $WS_4Cu_4Br_2Py_6$ (1), $WS_4Cu_4I_2Py_6$ (2) and $MoS_4Cu_4Br_2Py_6$ (3).

Supplementary Material (ESI) for <i>PCCP</i>							
C	1 2257	1 0465	$1.18 \odot uie OWh$ 1.2014	C	1 2600	2 0207	1 2010
C	-4.3331 5 1577	-1.940J	1.2014		-4.3090 5 1070	-2.0207	1.2010
C C	-5.4577	-2.3134	2.0241	C	-5.48/2	-2.3894	1.9481
C	-5.4740	-3.3318	2.0009	C	-5.4549	-3.3770	2.0784
C	-4.3519	-4.3/82	2.5505	C	-4.2911	-4.3531	2.6410
C	-3.2699	-3.9376	1.7935	C	-3.2156	-3.9126	1.8748
C	-1.9937	3.6537	-2.1015	C	-2.1992	-3.5490	-2.6070
C	-2.3855	4.5989	-3.0468	C	-2.3068	-4.5658	-3.5535
С	-3.7210	5.0074	-3.0794	С	-1.7632	-5.8200	-3.2632
C	-4.6102	4.4535	-2.1547	С	-1.1288	-6.0041	-2.0319
C	-4.1349	3.5255	-1.2294	С	-1.0609	-4.9330	-1.1430
$MoS_4Cu_4Br_2Pv_6 (3)$							
	x	y	Z.				
Мо	0.0000	0.0000	0.0417				
Br	4.4390	0.2829	1.6930				
Br	-4.4390	-0.2829	1.6930				
Cu	2.6890	-0.5838	0.0753				
Cu	0.5850	2.6712	0.0099				
Cu	-2.6890	0.5838	0.0753				
Cu	-0.5850	-2.6712	0.0099				
S	1.6073	0.9985	-1.2190				
Š	-1.6073	-0.9985	-1.2190				
Š	-1.0241	1.6186	1.2825				
Š	1.0241	-1.6186	1.2825				
N	3.8943	-1.6421	-1.2062				
N	-1.7955	-3.8359	1.1719				
Ν	0.0689	-4.0443	-1.4277				
Ν	-3.8943	1.6421	-1.2062				
N	1.7955	3.8359	1.1719				
N	-0.0689	4.0443	-1.4277				
C	3,3560	-2.4892	-2.1082				
Č	4.1209	-3.1893	-3.0385				
C C	5,5040	-2,9949	-3.0583				
C	6.0653	-2.1065	-2.1376				
C	5,2329	-1.4581	-1.2267				
C C	-3,1182	-3.5761	1.2757				
C	-3.9865	-4.3792	2.0145				
C C	-3.4818	-5,4993	2.6757				
C	-2.1127	-5.7680	2.5821				
C	-1.3112	-4.9158	1.8277				
C C	-0 5631	-4 1193	-2.6207				
C C	-0 2550	-5 0788	-3 5829				
C	0.2330	-6.0131	-3 3090				
C	1 4061	-5 9445	-2.0786				
C	1.0391	-4.9508	-1.1734				

This journal is © the Owner Societies 2009						
С	-3.3560	2.4892	-2.1082			
С	-4.1209	3.1893	-3.0385			
С	-5.5040	2.9949	-3.0583			
С	-6.0653	2.1065	-2.1376			
С	-5.2329	1.4581	-1.2267			
С	3.1182	3.5761	1.2757			
С	3.9865	4.3792	2.0145			
С	3.4818	5.4993	2.6757			
С	2.1127	5.7680	2.5821			
С	1.3112	4.9158	1.8277			
С	0.5631	4.1193	-2.6207			
С	0.2550	5.0788	-3.5829			
С	-0.7474	6.0131	-3.3090			
С	-1.4061	5.9445	-2.0786			
С	-1.0391	4.9508	-1.1734			

Supplementary Material (ESI) for PCCP

2. Fig. 1S HRS experimental setup.

LP, long pass filter; HW, half-wave plate; P, polarizer; BS, beam splitter; EM, energy meter; L, lens; S, sample cell; CL, collection lens; M, monochromator; PMT, photo-multiplied tube; DO, digital oscilloscope.

3. Fig. 2S Illustrations of the orbital-pair transitions and corresponding CT routes involved in the intense lowest-energy electronic excitation.

 $H-7 \rightarrow L+7$, LLCT