Supplementary information for

Jet-cooled vibronic spectroscopy of phenylcyclopentenes: I. S_0 and S_1 torsional potentials in phenylcyclopentadi-1,3-ene

Josh J. Newby, Ching-Ping Liu,[†] Christian W. Müller, and Timothy S. Zwier^{*} Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084 U.S.A.

Contents

Figure S1: Extended, saturated R2PI spectrum showing very weak transitions over 400 cm⁻¹ above the electronic origin transition.

Table S1: Assignments for the LIF spectrum of PCP3D.

 Table S2: Complete Assignments of the SVLF of PCP3D

Table S3: Calculated torsional angles and torsional vibrational frequencies for the twoisomers of PCPD that are expected to be in the probed spectra region.

Figure S2: Calculated torsional potentials for PCP4D in the S_0 (lower) and S_1 (upper) states. The S_0 potential was calculated at the B3LYP//6-311+G(d,p) level of theory while the S_1 was computed using CIS//6-311+G(d,p).

A note on calculating Frank-Condon intensities for hot band spectra

Figure S3: Franck-Condon intensity simulations of the (a) LIF spectrum and (b) SVLF spectrum of the 57_1^1 transitions. The LIF simulation assumes a vibrational temperature of 9.8 K. The resonance fluorescence band was cut off in the 57_1^1 band SVLF spectrum as most of the observed intensity was due to incomplete subtraction of scattered light from the laser.

Figure S4: Calculated molecular orbitals (CIS//6-311+G(d,p)) for PCP3D. Since the calculated $S_1 \leftarrow S_0$ transition is calculated to be HOMO to LUMO it seems apparent the cyclopentadiene ring is not merely a spectator in the electronic spectrum.

Figure S1: Extended, saturated R2PI showing very weak transitions above 400 cm⁻¹ above the electronic origin transition.

Table S1: Assignments for the LIF spectrum of PCP3D.

Frequency	$\Delta v/cm^{-1}$	Assignment	Frequency	$\Delta v/cm^{-1}$	Assignment
31688	-51	57^{0}_{2}	32018	279	
31696	-43	56^{1}_{1}	32040	301	$55^{1}_{0}57^{2}_{1}$
31739	0	0^{0}_{0}	32052	313	
31776	37	$56^{1}_{0} 57^{0}_{1}$	32055	316	38_{0}^{2}
31810	71	57^{1}_{1}	32074	335	37^{1}_{0}
31849	110	$55^{1}_{0} 57^{0}_{1}$	32083	344	
31860	121	56^{2}_{0}	32089	350	
31878	139	57 ² ₂	32107	368	
31897	158	38^{1}_{0}	32116	377	57^{4}_{0}
31919	180	$55^{1}_{0} 57^{2}_{1}$	32121	382	
31927	188	57^{2}_{0}	32160	421	
31932	193	$56_0^2 57_1^1$	32192	453	
31968	229	$55^{1}_{0}57^{1}_{0}$	32232	493	$37^{1}_{0} 38^{1}_{0}$
32000	261	57^{3}_{1}	32370	631	
32002	263		32553	814	
32014	275				

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009

Table S2:	Complete	Assignments	of the SV	LF of PCP3D

Ori	gin	31740 cm ⁻¹	37 ¹ ₀	0^{0}_{0} +334 cm ⁻¹	57 ² ₀	0^{0}_{0} + 188 cm ⁻¹	56 ² ₀	0^{0}_{0} + 121 cm ⁻¹
Δv /	cm ⁻¹	Assignment	Δv / cm ⁻¹	Assignment	Δv / cm ⁻¹	Assignment	Δv / cm ⁻¹	Assignment
()	0^{0}_{0}	0	37^{1}_{0}	0	57^{2}_{0}	51	$56^{2}_{0}57^{0}_{2}$
5	1	57^{0}_{2}	50	$37^{1}_{\ 0} \ 57^{0}_{\ 2}$	51	57 ² ₂	111	$56_0^2 57_4^0$
1	12	57^{0}_{4}	109	$37^{1}_{\ 0} \ 57^{0}_{\ 4}$	111	57^{2}_{4}	127	$56^{2}_{1} 57^{0}_{1}$
10	58	38°1	175	$37^{1}_{0}57^{0}_{6}$	126	$56^{0}_{1} 57^{2}_{1}$	208	56^{2}_{2}
20)9	56 ⁰ ₂	208	$37^{1}_{0}56^{0}_{2}$	175	57^{2}_{6}	256	$56^2_2 57^0_2$
34	19	37 ⁰ 1	348	37 ¹ ₁	207	$56^{0}_{2} 57^{2}_{0}$	349	$37^{0}_{1} 56^{2}_{0}$
39	98	$37^{0}_{1} 57^{0}_{2}$	354	$37^{1}_{\ 0}\ 56^{0}_{\ 1}\ 57^{0}_{\ 1}$	245	57 ² ₈	355	$55^{0}_{1} 56^{2}_{1}$
4	55	$37^{0}_{1} 57^{0}_{4}$	478	$37^{1}_{\ 0}\ 54^{0}_{\ 1}\ 56^{0}_{\ 1}$	276	$55^{0}_{1} 57^{2}_{1}$	416	56 ² ₄
50)3	55 ⁰ ₂	521	$37^{1}_{\ 0}54^{0}_{\ 1}56^{0}_{\ 1}57^{0}_{\ 2}$	316	57^{2}_{10}	476	$54^{0}_{1}56^{2}_{3}$
5	16	$37^{0}_{1} \ 38^{0}_{1}$	577	$37^{1}_{\ 0} 54^{0}_{\ 1} 56^{0}_{\ 1} 57^{0}_{\ 4}$	348	$37^{0}_{1} 57^{2}_{0}$	557	$37^{0}_{1} 56^{2}_{2}$
55	58	$56^{0}_{2} 37^{0}_{1}$	626	$37^{1}_{1} 55^{0}_{1} 57^{0}_{1}$	356	$55^{0}_{1}56^{0}_{1}55^{2}_{0}$	603	$37^{0}_{1}56^{2}_{2}57^{0}_{2}$
63	31	35 ⁰ 1	696	37 ¹ ₂	397	$37^{0}_{1} 57^{2}_{2}$	713	$55^{0}_{2} 56^{2}_{2}$
68	30	34^{0}_{1}	703	$37^{1}_{1} 55^{0}_{1} 56^{0}_{1}$	456	$37^{0}_{1} 57^{2}_{4}$	909	$37^{0}_{2} 56^{2}_{2}$
69	97	37^{0}_{2}	826	$37^{1}_{1} 54^{0}_{1} 56^{0}_{1}$	475	$37^{0}_{1} 56^{01} 57^{2}_{1}$	1076	$32^{0}_{1} 56^{2}_{2}$
74	43 54	$4^{0}_{2}, 37^{0}_{2} 57^{0}_{2}$	865	$32^{0}_{1} 37^{1}_{0}$	519	$37^{0}_{1} 57^{2}_{6}$		
82	26	33 ⁰ 1	914	$32^{0}_{\ 1}\ 37^{1}_{\ 0}\ 57^{0}_{\ 2}$	557	$37^{0}_{1}56^{0}_{2}57^{2}_{0}$		
80	56	32^{0}_{1}	1046	37 ¹ ₃	588	$37^{0}_{1}55^{0}_{1}57^{2}_{1}$		
9	18	$32^{0}_{1}57^{0}_{2}$	1177	$33^{0}_{1} 37^{1}_{1}$	622	$37^{0}_{1}55^{0}_{1}57^{2}_{1}$		
10	09	29^{0}_{1}	1347	$32^{0}_{1}37^{1}_{1}54^{0}_{1}56^{0}_{1}$	696	$37^{0}_{2} 57^{2}_{0}$		
10	20	28^{0}_{1}			746	$37^{0}_{2} 57^{2}_{2}$		
10	34	27^{0}_{1}			803	$37^{0}_{2} 57^{2}_{4}$		
10	47	37 ⁰ ₃			867	$37^{0}_{2} 57^{2}_{6}$		
11	22	25^{0}_{1}			906	$37^{0}_{\ 2} 56^{0}_{\ 2} 57^{2}_{\ 0}$		
12	16	23 ⁰ 1						
12	65	$23^{0}_{1} 57^{0}_{2}$						
13	25	$23^{0}_{\ 1} \ 57^{0}_{\ 4}$						
13	61	18^{0}_{1}						

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009

	38^{0}_{1}	0^{0}_{0} + 158 cm ⁻¹	57^{0}_{2}	0^{0}_{0} +188 cm ⁻¹	$55^{1}_{0}57^{1}_{0}$	0^{0}_{0} +230 cm ⁻¹
<u>-</u>	$\Delta v / cm^{-1}$	Assignment	Δv / cm ⁻¹	Assignment	$\Delta v / cm^{-1}$	Assignment
	0	38^{1}_{0}	0	57^{2}_{0}	0	$55^{1}_{0}57^{1}_{0}$
	127	$38^{1}_{\ 0} 56^{0}_{\ 1} 57^{0}_{\ 1}$	51	57 ² ₂	51	$55^{1}_{0} 57^{1}_{2}$
	166	38^{1}_{1}	111	57^{2}_{4}	112	55^{1}_{0}
	211	38^{1}_{1}	126	$56^{0}_{1} 57^{2}_{1}$	176	$55^{1}_{0} 57^{1}_{6}$
	266	$38_{1}^{1} 57_{04}$	175	57^{2}_{6}	244	$55^{1}_{0} 57^{1}_{8}$
	333	38 ¹ ₂	207	$56^{0}_{2} 57^{2}_{0}$	276	$55^{1}_{1} 57^{1}_{1}$
	374	$38^{1}_{0} 56^{0}_{2}$	245	57^{2}_{8}	315	$55^{1}_{0} 57^{1}_{10}$
	499	38 ¹ ₃	276	$55^{0}_{1} 57^{2}_{1}$	335	$38^{0}_{\ 2} 55^{1}_{\ 0} 57^{1}_{\ 0}$
	515	$37^{0}_{1} \ 38^{1}_{1}$	316	57^{2}_{10}	349	$37^{0}_{1}55^{1}_{0}57^{1}_{0}$
	557	$37^{0}_{\ 1}\ 38^{1}_{\ 1}\ 57^{0}_{\ 2}$	348	$37^{0}_{1} 57^{2}_{0}$	357	$55^{1}_{1}56^{0}_{1}57^{1}_{0}$
	613	$37^{0}_{\ 1}\ 38^{1}_{\ 1}\ 57^{0}_{\ 4}$	356	$55^{0}_{1}56^{0}_{1}55^{2}_{0}$	399	$37^{0}_{1}55^{1}_{0}57^{1}_{2}$
	671	$38^{1}_{1}55^{0}_{2}$	397	$37^{0}_{1} 57^{2}_{2}$	456	$37^{0}_{1}55^{1}_{0}57^{1}_{4}$
	681	$37^{0}_{1} \ 38^{1}_{1}$	456	$37^{0}_{1} 57^{2}_{4}$	504	$38^0_3 55^1_0 57^1_0$
	866	$37^{0}_{2} 38^{1}_{1}$	475	$37^{0}_{1} 56^{0}_{1} 57^{2}_{1}$	520	$37^{0}_{1}55^{1}_{0}57^{1}_{6}$
	904	$37^{0}_{2} 38^{1}_{1} 57^{1}_{2}$	519	$37^{0}_{1} 57^{2}_{6}$	587	$37^{0}_{1}55^{1}_{0}57^{1}_{8}$
	993	$33^{0}_{1} 38^{1}_{1}$	557	$37^{0}_{1}56^{0}_{2}57^{2}_{0}$	625	$37^{0}_{1}55^{1}_{1}57^{1}_{1}$
	1033	$32^{0}_{1} \ 38^{1}_{1}$	588	$37^{0}_{1} 55^{0}_{1} 57^{2}_{1}$	681	$37^{0}_{\ 1}\ 38^{0}_{\ 2}\ 55^{1}_{\ 0}\ 57^{1}_{\ 0}$
	1079	$32^{0}_{1} 38^{1}_{1} 57^{0}_{2}$	622	$37^{0}_{1} 55^{0}_{1} 57^{2}_{1}$	705	$37^{0}_{\ 1} \ 55^{1}_{\ 1} \ 56^{0}_{\ 1} \ 57^{1}_{\ 0}$
	1176	$29^{0}_{1} 38^{1}_{1}$	696	$37^{0}_{2} 57^{2}_{0}$	745	$54^{0}_{2}55^{1}_{0}57^{1}_{0}$
	1187	$28^{0}_{1} \ 38^{1}_{1}$	746	$37^{0}_{2} 57^{2}_{2}$	867	$32^{0}_{1}55^{1}_{0}57^{1}_{0}$
	1201	$27^{0}_{1} \ 38^{1}_{1}$	803	$37^{0}_{2} 57^{2}_{4}$	973	$37^{0}_{2} 55^{1}_{1} 57^{1}_{1}$
	1216	$37^{0}_{3} 38^{1}_{1}$	867	$37^{0}_{2} 57^{2}_{6}$	978	$37^{0}_{1} 55^{1}_{2} 56^{0}_{1} 57^{1}_{1}$
	1289	$25^{0}_{1} 38^{1}_{1}$	906	$37^{0}_{2}56^{0}_{2}57^{2}_{0}$	1028	$37^{0}_{\ 2} \ 38^{0}_{\ 2} \ 55^{1}_{\ 0} \ 57^{1}_{\ 0}$
					1055	$37^{0}_{2}55^{1}_{1}56^{0}_{1}57^{1}_{0}$
					1203	$32_{\ 1}^{0} 38_{\ 2}^{0} 55_{\ 0}^{1} 57_{\ 0}^{1}$
					1216	$32_{\ 1}^{0} 37_{\ 1}^{0} 55_{\ 0}^{1} 57_{\ 0}^{1}$
=					1223	$32^{0}_{1}55^{1}_{1}56^{0}_{1}57^{1}_{0}$

		PCP3D		РСР	24D
		Torsional	Torsional	Torsional	Torsional
	Method	Angle	Frequency	Angle	Frequency
S_0	AM1	0.0	23.4	25.7	46.5
	HF/6-31G	22.1	36.3	36.1	60.9
	HF/6-31+G(d,p)	25.6	38.6	36.5	60.4
	B3LYP/6-31G	0.0	25.7	25.1	55.4
	B3LYP/6-31+G	11.2	26.6	27.1	53.5
	B3LYP/6-31G(d,p)	0.0	20.4	26.5	57.5
	B3LYP/6-31+G(d,p)	12.2	29.3	27.7	54.0
	B3LYP/6-311+G(d,p)	0.0	14.9	28.8	53.7
		15.8	33.3		
	B3LYP/6-311+G(2d,2p)	0.0	17.3	27.0	52.6
	MP2/6-31+G	42.3	53.6	48.2	55.5
S_1	CIS/6-31G	0.0	104.4	9.3	65.6
	CIS/6-31G(d,p)	0.0	102.0	9.8	61.2
	CIS/6-31+G(d,p)	0.0	104.2	3.4	53.5
	CIS/6-311G	0.3	104.8	7.5	64.5
	CIS/6-311+G	0.0	105.4	2.7	57.6
_	CIS/6-311+G(d,p)	0.0	105.8	1.8	56.6

Table S3: Calculated torsional angles and torsional vibrational frequencies for the two isomers of PCPD that are expected to be in the probed spectra region.

Figure S2: Calculated torsional potentials for PCP4D in the S₀ (lower) and S₁ (upper) states. The S₀ potential was calculated at the B3LYP//6-311+G(d,p) level of theory while the S₁ was computed using CIS//6-311+G(d,p).

Simulated Franck-Condon Intensities

Absorption intensities, which can be compared to experimental band intensities of R2PI or LIF spectra , were calculated according to

$$I(T_0^n) \propto \left(\sum_{i=1}^N c_{i0}^{S_0, even} c_{in}^{S_1, even}\right)^2 + \left(\sum_{i=1}^N c_{i0}^{S_0, odd} c_{in}^{S_1, odd}\right)^2,$$
(1)

whereas emission intensities, which can be compared to the band intensities of SVLF spectra (Figure 12), were determined according to

$$I(T_n^0) \propto \left(\sum_{i=1}^N c_{in}^{S_0, even} c_{i0}^{S_1, even}\right)^2 + \left(\sum_{i=1}^N c_{in}^{S_0, odd} c_{i0}^{S_1, odd}\right)^2.$$
 (2)

For the simulation of the LIF spectrum of PCP3D containing all transitions involving the torsional mode 57, i.e. the origin (0^0_0) , the cold band, 57^2_0 , and the hot bands 57^0_2 , 57^1_1 and 57^3_1 . The knowledge of the Boltzmann factors of the pertinent ground state levels 0_0 57₁ and 57₂ is required. The calculation of the factors is achieved in the following manner.

First, the approximate vibrational temperature T_{vib} is calculated according to

$$\frac{f(57_2^2)}{f(0_0^0)} = \frac{I_{FES}(57_2^2)}{I_{FES}(0_2^2)} \cdot \frac{I_{SVLF_0^0}(0_2^2)}{I_{SVLF_0^0}(57_2^2)} = \exp\left[-\frac{h\nu}{kT_{vib}}\right]$$
(3)

Which yields $T_{vib}=9.8K$ for $v(57^{0}_{2})=51$ cm⁻¹. This value can be used to calculate the Boltzmann factor for the 57¹ level as

$$\frac{f(57_2^2)}{f(0_0^0)} = 2.8848 \cdot 10^{-2}.$$
(4)

All relative intensities were then simulated according to

$$I(57_{m}^{n})\alpha \left(f_{m}\sum_{i=1}^{N}c_{cim}^{S0,even}c_{in}^{S1,even}\right)^{2} + \left(f_{m}\sum_{i=1}^{N}c_{cim}^{S0,odd}c_{in}^{S1,odd}\right)^{2}$$
(5)

Figure S3: Franck-Condon intensity simulations of the (a) LIF spectrum and (b) SVLF spectrum of the 57_{1}^{1} transitions. The LIF simulation assumes a vibrational temperature of 9.8 K. The resonance fluorescence band was cut off in the 57_{1}^{1} band SVLF spectrum as most of the observed intensity was due to incomplete subtraction of scattered light from the laser.

Figure S4: Calculated molecular orbitals (CIS//6-311+G(d,p)) for PCP3D. Since the calculated $S_1 \leftarrow S_0$ transition is calculated to be HOMO to LUMO it seems apparent that the cyclopentadiene ring is not merely a spectator in the electronic spectrum.

Figure S5: Graphical representation of the vibrational modes of PCP3D

