Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009 Electronic Supplementary Information

for:

An integrated experimental and theoretical investigation on Cu(hfa)₂•TMEDA: structure, bonding and reactivity

Giuliano Bandoli,^a Davide Barreca,^b* Alberto Gasparotto,^c Roberta Seraglia,^b Eugenio Tondello,^c Anjana Devi,^d Roland A. Fischer,^d Manuela Winter,^d

Ettore Fois,^e Aldo Gamba,^e and Gloria Tabacchi^e*

^{*a*} Department of Pharmaceutical Sciences – Padova University – 35131 Padova, Italy.

^b ISTM-CNR and INSTM – Department of Chemistry – Padova University - 35131

Padova, Italy.

^c Department of Chemistry – Padova University and INSTM - 35131 Padova, Italy.

^{*d*} Inorganic Materials Chemistry Group - Lehrstuhl für Anorganische Chemie II - Ruhr-University Bochum - D-44780 Bochum, Germany.

^e Department of Chemical and Environmental Sciences - Insubria University and INSTM
- 22100 Como, Italy.

*Corresponding authors: Tel: + 39 049 8275170; Fax: + 39 049 8275161; E-mail: <u>davide.barreca@unipd.it</u> (D.B.); Tel: + 39 031 326214; Fax: +39 031 326230; E-mail: <u>gloria@fis.unico.it</u> (G.T.).

This journal is © the Owner Societies 2009

Table S1. Relevant bond distances *d*, NBO charges *q*, (with corresponding Mulliken charges in parenthesis) and Mulliken spin densities *S* of $[Cu(H_2O)_n(NH_3)_n]^{2+}$ (n=1, 2) optimized at different levels of theory adopting the ECP10-MDF-aug-cc-pVDZ-PP combination of pseudopotential and basis set for Cu and a D95+* for ligand atoms. For the smaller system (n=1) the Møller-Plesset MP2,¹ the coupled cluster with double substitutions (CCD)² and the coupled cluster with single and double substitutions (CCSD)³ levels of theory have been compared with B3LYP; for the n=2 system only the MP2 and B3LYP levels of theory have been considered.

$n=1$ (C_s	MP2	CCD	CCSD	B3LYP
symmetry)				
d(Cu-O) (nm)	0.1830	0.1847	0.1847	0.1865
d(Cu-N) (nm)	0.1876	0.1904	0.1895	0.1908
$q_{ m Cu}$	1.765 (1.279)	1.769 (1.314)	1.767 (1.304)	1.577 (1.032)
q_{O}	-1.144 (-0.904)	-1.141 (-	-1.142 (-	-1.074 (-0.711)
		0.910)	0.910)	
$q_{ m N}$	-1.314 (-1.214)	-1.314 (-	-1.315 (-	-1.190 (-1.024)
		1.241)	1.227)	
S _{Cu}	1.027	1.024	1.025	0.981
$n=2(C_2)$	MP2	-	-	B3LYP
symmetry)				
d(Cu-O) (nm)	0.1997	-	-	0.2027
d(Cu-N) (nm)	0.1976	-	-	0.2008
$q_{ m Cu}$	1.680 (1.554)	-	-	1.399 (1.279)
<i>q</i> o	-1.098 (-0.985)	-	-	-1.049 (-0.864)
$q_{ m N}$	-1.252 (-1.483)	-	-	-1.163 (-1.318)
S _{Cu}	0.897	-	-	0.702

1 C. Møller and M.S. Plesset, *Phys. Rev.*, 1934, 46, 618.

2 R. J. Bartlett and G. D: Purviss, Int. J. Quant. Chem., 1978, 14, 516

3 J. C. Zek, Adv. Chem. Phys., 1969, 14, 35.

This journal is © the Owner Societies 2009

Table S2. Relevant geometrical parameters of $Cu(hfa)_2$ •TMEDA optimized with the C_2

symmetry at different levels of theory.^a

Bond lengths (nm)	Exp	U- B3LYP SDD D95	U- B3LYP SDD* D95*	U- B3LYP TZVP D95*	U- B3LYP AVDZ D95+* ^b	U-PBE AVDZ D95+*	U- PBE PW PW
Cu-O(1)	0.2337(2)	0.2316	0.2313	0.2324	0.2358	0.2347	0.2328
Cu-O(2)	0.1977(3)	0.2013	0.2006	0.2008	0.2007	0.1995	0.2005
Cu-N(1)	0.2021(5)	0.2080	0.2108	0.2119	0.2083	0.2098	0.2113
N(1)-C(1)	0.1435(7)	0.1505	0.1487	0.1487	0.1492	0.1490	0.1489
O(1)-C(7)	0.1236(5)	0.1275	0.1250	0.1250	0.1246	0.1259	0.1255
O(2)-C(9)	0.1244(5)	0.1293	0.1268	0.1269	0.1267	0.1280	0.1276
C(7)-C(8)	0.1425(6)	0.1418	0.1418	0.1418	0.1420	0.1423	0.1415
C(8)-C(9)	0.1377(5)	0.1400	0.1399	0.1399	0.1398	0.1404	0.1396
Bond angles							
O(1)-Cu-	84.67(10)	86.9	84.7	84.7	83.4	85.6	85.4
O(1)-Cu-	94.90(14)	97.4	96.0	96.0	94.1	91.6	95.6
O(2)-Cu-	90.72(12)	91.7	91.4	91.4	91.6	91.2	91.2
O(1)-Cu-	159.66(12)	165.6	168.4	168.4	163.6	168.9	169.5
O(2)-Cu-	174.76(16)	179.2	177.5	177.1	178.0	177.1	177.4
Cu-O(1)-	118.7(2)	122.0	120.7	120.6	120.5	118.6	119.4
Cu-O(2)-	128.5(3)	129.4	127.9	128.0	129.2	126.6	126.8
Cu-N(1)-	107.9(3)	108.6	104.9	105.0	105.2	104.6	104.4

^{*a*}The level of calculation is specified on top of the table, *i.e.*: line 1: DFT functional; line 2: Cu pseudopotential and basis set; line 3: ligands basis set. For Cu, the notation AVDZ refers to ECP10-MDF-aug-cc-pVDZ-PP. All structures are optimized in the gas phase except from ^{*b*}.

[b] Optimization performed adopting the PCM solvent model (ethanol).

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009

For comparison, the corresponding experimental values are reported in the second column.

This journal is © the Owner Societies 2009

Table S3. FT-IR bands assignment. Legends: v = stretching, $\beta =$ in plane bending, $\gamma =$ out of plane bending, $\delta_{as} =$ asymmetric deformation, $\delta_s =$ symmetric deformation, rock = rocking mode, wag = wagging mode, twist = twisting mode. Bold characters indicate the normal mode dominant component. For atom labels, see Figure S1.

1		
$Exp(cm^{-1})$		assignment
3135	\rightarrow	v(CH) hfa
3027	\rightarrow	v(CH _b) TMEDA
3000 - 2900	\rightarrow	$v(CH_b) + v(CH_{b'})$ TMEDA
2880 - 2810	\rightarrow	$\nu(CH_{a'}) + \nu(CH_{a}) TMEDA$
1674	\rightarrow	v(C=O) + v(C=C) hfa
1549	\rightarrow	$v(C=C) + \beta(C-H)$ hfa
1527	\rightarrow	β (C-H) + v(C=C) + v(C=O) hfa + δ (CH ₂) (scissor) + δ _{as} (CH ₃)
TMEDA		
1505	\rightarrow	β (C-H) + v(C=C) + v(C=O) hfa + δ (CH ₂) (scissor) + δ _{as} (CH ₃)
TMEDA		
1480, 1468	\rightarrow	$\delta_{as}(CH_3)$ TMEDA
1441	\rightarrow	$\delta_{as}(CH_3) + \delta_s(CH_3)$ TMEDA
1412	\rightarrow	$\delta_{s}(CH_{2})$ (wag) TMEDA
1384	\rightarrow	$\delta_{as}(CH_2)$ (wag) TMEDA
1338	\rightarrow	$v_{s}(C-CF_{3})$ hfa
1313, 1287	\rightarrow	$\delta_{as}(CH_3) + \delta_{as}(CH_2)$ (twist) TMEDA
1257	\rightarrow	β (C-H) + v _s (C-CF ₃) hfa
1210, 1186	\rightarrow	v_s (C-F) (mainly C-F _c bonds) hfa
1140	\rightarrow	β (C-H) + v _s (C-CF ₃) + v _{s,as} (C-F) (all bonds) hfa
1106	\rightarrow	$\delta_{s}(CH_{3}) + \delta_{s}(CH_{2})$ (twist) TMEDA
1086	\rightarrow	$v_s(C-C) + v_{s,as}(C-F)$ (not involving C-F _c bonds) hfa
1059	\rightarrow	$v(C-C) + \delta(CH_2)$ (wag) TMEDA
1047	\rightarrow	$v(C-C) + \delta_{as}(CH_3) + \delta(CH_2)$ (rock/twist) TMEDA
1020	\rightarrow	$v(C-N) + v(C-C) + \delta_{as}(CH_3) + \delta(CH_2)$ (rock/twist) TMEDA
1003	\rightarrow	δ (CH ₂) (rock) + δ _{as} (CH ₃) + v(C-N) TMEDA
952	\rightarrow	$v(C-N) + \delta_{as}(CH_3) + \delta(CH_2)$ (rock) TMEDA
939	\rightarrow	$v_s(C-C) + v(C-CF_3) + v(C-F)$ hfa
922	\rightarrow	TMEDA symmetric breathing + $\delta(CH_2)$ (rock) + $\delta(CH_3)$
790, 810	\rightarrow	γ (C-H) hfa + TMEDA symmetric breathing + δ (CH ₂) (wag) + v(C-F),
v(C-C) hfa		
760, 766	\rightarrow	γ (C-H) hfa; ν (C-N) + ν (C-C) + δ (CH ₂) (rock) TMEDA
738, 699	\rightarrow	$\delta(CF_3)$ (scissor) + v _s (C-F) + v(C-C) hfa
666	\rightarrow	collective in plane bending hfa $[v(C-C) + \delta(CF_3) (scissor)]$
635	\rightarrow	TMEDA asymmetric breathing/ δ (CH ₂) (rock)
585	\rightarrow	collective in plane bending hfa $[v(C-C) + \delta(CF_3) (scissor) + v(Cu-O)]$
576	\rightarrow	collective in plane bending hfa $[v(C-C) + \delta(CF_3) (scissor) + v(Cu-O)]$
525	\rightarrow	symmetric out of plane bending hfa + $\delta(CF_3)$ (scissor)
440 - 510	\rightarrow	breathing modes of N(1) N(1)* O(2) O(2)* plane [mainly v(Cu-O(2)),
	v(Cu-N(1)) +	

ligands multiband deformation modes (wag, rock, twist, scissor, breathing)]

This journal is © the Owner Societies 2009

Calculated wavenumbers: 461 cm⁻¹: v(Cu-N) dominant, 483 cm⁻¹: equal contribution of v(Cu-O(2)) and v(Cu-N) modes; 491 cm⁻¹: v(Cu-O(2)) dominant; 502 cm⁻¹: v(Cu-N) dominant.

This journal is © the Owner Societies 2009

Table S4. UV-Vis spectral data, TD-DFT calculated excitations and approximateassignments. A graphical representation of the corresponding MOs is reported in FiguresS3-S5.^a

E (eV) (<i>exp</i>)	E(eV) (calc)	f	Composition %		<i>Nature of the transition</i> <i>and approximate assignment</i>
1.6-2.0 (w)	1.91	0.0003	β HOMO-6 $\rightarrow \beta$ LUMO	26%	$\mathbf{M}(d_z^{-2}) \rightarrow \mathbf{M}(d_{xy}) + L_{(TMEDA \text{ homo, hfa lumo})}$
	2.03	0.0002	β HOMO-9 \rightarrow β LUMO β HOMO 7 \rightarrow β LUMO	49% 26%	$\mathbf{M}(\mathbf{d}_{xz}) \to \mathbf{M}(\mathbf{d}_{xy}) + \mathbf{L}$ $\mathbf{M}(\mathbf{d}_{xy}) + \mathbf{L}$
2.8-3.1 (w) 3.5 (m)	3.16 3.44	0.0036 0.0019	β HOMO-1 \rightarrow β LUMO β HOMO \rightarrow β LUMO	85% 53%	$\begin{split} \mathbf{L}_{(\text{hfa homo})} &\to \mathbf{M}(d_{xy}) + \mathbf{L}_{(\text{TMEDA homo, hfa homo-2})} \to \mathbf{M}(d_{xy}) + \mathbf{L} \\ \mathbf{L}_{(\text{hfa homo})} \to \mathbf{M}(d_{xy}) \\ \mathbf{L}_{(\text{hfa homo})} + \mathbf{M}(d_{yz}) \to \mathbf{M}(d_{xy}) + \mathbf{L} \end{split}$
	3.51	0.0020	α HOMO-3 $\rightarrow \alpha$ LUMO	28%	$\mathbf{M}(\mathbf{d}_z^2) + \mathbf{L}_{(hfa \text{ homo-1})} \rightarrow \mathbf{L}_{(hfa \text{ lumo})}$ $\mathbf{M}(\mathbf{d}_z^2) + \mathbf{L}$
4.1 (vs)	3.91	0.0275	β HOMO-2 \rightarrow β LOMO+1 β HOMO-3 \rightarrow β LUMO	23% 81%	$\mathbf{L}_{(hfa \text{ homo-1})} \rightarrow \mathbf{L}_{(hfa \text{ homo-1})} \rightarrow \mathbf{L}_{(hfa \text{ homo})}$ $\mathbf{L}_{(hfa \text{ homo-1})} \rightarrow \mathbf{M}(\mathbf{d}_{xy}) + \mathbf{L}$
4.4-4.6 (vs)	4.07 4.43	0.0819 0.1190	β HOMO-4 → $β$ LUMO β HOMO-8 → $β$ LUMO	68% 28%	$\begin{split} & \boldsymbol{L}_{(hfa \ homo-2, TMEDA \ homo-1)} + \boldsymbol{M}(d_z^{\ 2}) \rightarrow \boldsymbol{M}(d_{xy}) + \boldsymbol{L} \\ & \boldsymbol{M}(d_z^{\ 2}) \rightarrow \boldsymbol{M}(d_{xy}) + \boldsymbol{L} \end{split}$
	4.51	0.1756	β HOMO-4 → $β$ LUMO β HOMO-8 → $β$ LUMO	26% 23%	$\begin{split} & L_{(hfa \text{ homo-2,TMEDA homo-1})} + M(d_z^2) \rightarrow M(d_{xy}) + L \\ & M(d_z^2) \rightarrow M(d_{xy}) + L \end{split}$
	4.54	0.0448	β HOMO-5 $\rightarrow \beta$ LUMO	23%	$L_{(\text{hfa homo-2,TMEDA homo)}} + M(d_{xz}) \rightarrow M(d_{xy}) + L$
	4.55	0.0101	α HOMO-4 $\rightarrow \alpha$ LUMO	45%	$L_{(hfa \text{ homo-1})} \rightarrow L_{(hfa \text{ lumo})}$
	4.60	0.0721	α HOMO-4 $\rightarrow \alpha$ LUMO+1	50%	$L_{(hfa \text{ homo-1})} \rightarrow L_{(hfa \text{ lumo})}$
4.9-5.3 (t)	4.64 4.92	0.0806 0.0204	α HOMO-4 $\rightarrow \alpha$ LUMO α HOMO-6 $\rightarrow \alpha$ LUMO α HOMO-5 $\rightarrow \alpha$ LUMO+1	45% 35% 29%	$\begin{split} & L_{(hfa \text{ homo-1})} \rightarrow L_{(hfa \text{ lumo})} \\ & L_{(hfa \text{ homo-2, TMEDA homo)}} + M(d_{xz}) \rightarrow L_{(hfa \text{ lumo})} \\ & L_{(hfa \text{ homo-2, TMEDA homo-1})} + M(d_z^2) \rightarrow L_{(hfa \text{ lumo})} \end{split}$
	5.03	0.0196	$β$ HOMO-4 \rightarrow $β$ LUMO+2 $β$ HOMO-5 \rightarrow $β$ LUMO+1	56% 33%	$\begin{split} & L_{(hfa \text{ homo-2,TMEDA homo-1})} + M(d_z^2) \rightarrow L_{(hfa \text{ lumo})} \\ & L_{(hfa \text{ homo-2,TMEDA homo)}} + M(d_{xz}) \rightarrow L_{(hfa \text{ lumo})} \end{split}$

^{*a*} Only transitions with predicted oscillator strengths f > 0.01 are cited unless a weaker transition relates to an observed feature. The reported assignments are approximate, and the dominant character of each excitation is evidenced in bold. The (L + M) notation indicates that the initial or final state of the transition is localized on both metal and ligands. Capital and lower case characters refer to Cu(hfa)₂•TMEDA MOs and ligands MOs, respectively. Contributions to the transitions with weights < 20% are not listed. Legends: L = ligands; f = calculated oscillator strength; M = Metal; w = weak intensity; m = medium intensity; vs = very strong intensity; t = tail.

This	journal	is ©	the	Owner	Societies	2009
------	---------	------	-----	-------	-----------	------

Table S5 ^{<i>a</i>} . Donor/acce	ptor perturbation e	energies E(2) f	or Cu(hfa) ₂ •TMEDA.
	1 1		()2

a spin				β spin			
Donor	Acceptor	E(2) (kJ/mol)	Donor	acceptor	E(2) (kJ/mol)		
Cu	TMEDA	, , , , , , , , , , , , , , , , , , ,	Cu	TMEDA			
Lp*[0.129]	Ry*(N(1))	32.6	Lp*[0.133]	Ry*(N(1))	19.7		
Lp*[0.129]	Ry*(N(1))*	32.6	Lp*[0.133]	Ry*(N(1))*	19.7		
Cu	hfa		Cu	hfa			
Lp*[0.129]	Ry*(O(1))	-	Lp*[0.133]	Ry*(O(1))	-		
Lp*[0.129]	Ry*(O(2))	22.6	Lp*[0.133]	Ry*(O(2))	22.6		
TMEDA	Cu		TMEDA	Cu			
Lp(N(1))	Lp*	43.9	Lp(N(1))	Lp*	105.4		
Lp(N(1))*	Lp*	43.9	Lp(N(1))*	Lp*	105.4		
hfa	Cu		hfa	Cu			
Lp(O(1))	Lp*	31.0	Lp(O(1))	Lp*	30.1		
Lp(O(2))	Lp*	70.7	Lp(O(2))	Lp*	158.6		

^{*a*}Only contributions with E(2) > 4.2 kJ/mol and energy difference between the donor and acceptor NBO orbitals $\Delta \epsilon_{ij} < 0.1$ a.u. are reported. Lp = lone pair; Ry = Rydberg orbital. The * symbol refers to antibonding NBO orbitals. For the Cu-backdonation interactions, the NBO orbital populations calculated for Cu are reported in brackets.

Supplementary Material (ESI) for PCCP This journal is \bigcirc the Owner Societies 2009 **Figure S1.** Representation of the C_2 gas phase optimized structure of Cu(hfa)₂•TMEDA.

Atom color codes: Cu: yellow, F: green, O: red, N: blue, C: grey, H: white.

This journal is © the Owner Societies 2009

Figure S2. U-B3LYP/TD-DFT/GTO energy levels of the frontier MOs for $Cu(hfa)_2$ •TMEDA: (a) α - and β - MOs energies (C_2 optimized structure; 0 K) (b) α - and β - electronic Density of States (DOS) calculated on the structures sampled from the 397 K FPMD trajectory.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009 **Figure S3.** Representation of relevant molecular orbitals of isolated hfa.

lumo (π^* character)

homo-1 (n σ character)

homo (π character)

homo-2 (n σ character)

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009 **Figure S4.** Representation of relevant molecular orbitals of isolated TMEDA.

 $homo\;(n\sigma\;character)$

homo-1 (n σ character)

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009 **Figure S5 (a).** Relevant occupied MOs of Cu(hfa)₂•TMEDA (β-spin).

143 β (β -HOMO): Combination Cu d_{yz} , hfa homo mainly localized on hfa (π character).

141β (β-HOMO-2): combination Cu d_z^2 , hfa homo-1, TMEDA homo (mixed d-nσ character)

 $139\beta~(\beta\text{-HOMO-4})$ combination Cu $d_z^{\ 2},~hfa~homo\text{-2},~TMEDA~homo\text{-1}$ (mixed d-n σ character)

142β (β-HOMO-1): combination hfa homo (π character)

140β (β-HOMO-3): combination hfa homo-1 (nσ character) with minor contributions Cu d_{xz}, TMEDA homo

138 β (β -HOMO-5): combination Cu d_{xz}, TMEDA homo, hfa homo-2 (n σ character), mainly on ligands.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009

137 β (β -HOMO-6): combination Cu d_z^2 , hfa homo-2, TMEDA homo-1 with dominant d-metal character.

 135β (β -HOMO-8): combination Cu $d_z{}^2, \ hfa \ homo-2, \ TMEDA \ homo-1 \ with \ dominant \ d-metal \ character.$

136β (β-HOMO-7): combination Cu d_{xy} , TMEDA homo, hfa homo-2 (mixed d-nσ character).

134 β (β -HOMO-9): combination Cu d_{xz}, hfa homo-2 (Cu d-character).

 $\begin{array}{l} 133\beta \; (\beta\mbox{-HOMO-10}); \; \mbox{combination Cu} \\ d_{yz}, \; \mbox{TMEDA homo-1}, \; \mbox{hfa homo-2} \\ (mixed d\mbox{-n\sigma character}). \end{array}$

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009 **Figure S5 (b)**. Relevant occupied MOs of Cu(hfa)₂•TMEDA (α-spin).

144α (α-HOMO): combination of Cu d_{xv} , hfa homo, TMEDA homo.

141a (a-HOMO-3): combination Cu $d_z{}^2,$ hfa homo-1 (mixed d-n\sigma character)

139 α (α -HOMO-5): combination Cu d_z^2 , hfa homo-2, TMEDA homo-1 (dominant n σ character).

143 α (α -HOMO-1): combination of hfa homo with minor Cu d_z^2 contribution; dominant π character.

140 α (α-HOMO-4): combination hfa homo-1 (minor Cu d_{xz}, TMEDA homo contributions); dominant n σ character.

138α (α-HOMO-6): combination hfa homo-2 (minor Cu d_{xz} , TMEDA homo contributions); dominant no character.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009 **Figure S5 (c).** Relevant empty MOs of Cu(hfa)₂•TMEDA (β-spin).

146 β (β -LUMO+2): combination hfa lumo, Cu d_{xy}, mainly localized on hfa (dominant π^* character).

145β (β-LUMO+1): combination hfa lumo (minor Cu d_x^2 - $_y^2$ contributions); dominant π* character.

144 β (β -LUMO): combination Cu d_{xy} , hfa lumo, TMEDA homo with dominant Cu d-character.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009 **Figure S5 (d)**. Relevant empty MOs of Cu(hfa)₂•TMEDA (α-spin).

146 α (α -LUMO+1): combination hfa lumo (π^* character).

145 α (α -LUMO): combination hfa lumo (minor Cu d_x^{2-2} contribution); π^* character.