New Opportunities in Acquisition and Analysis of Natural Abundance Complex Solid-State ³³S MAS NMR Spectra: (CH₃NH₃)₂WS₄

Hans J. Jakobsen,^{*^a} Henrik Bildsøe,^a Jørgen Skibsted,^a Michael Brorson,^b Bikshandarkoil R. Srinivasan,^c Christian Näther^d and Wolfgang Bensch^d

^a Instrument Centre for Solid-State NMR Spectroscopy
Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
^b Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Lyngby, Denmark
^c Department of Chemistry, Goa University, Goa 403206, India
^d Institut für Anorganische Chemie, Universität Kiel, D-24098 Kiel, Germany

e-mail: hja@chem.au.dk

Electronic Supplementary Information Contents

Differences in Crystal Structures for (CH ₃ NH ₃) ₂ WS ₄ and	
(NH ₄) ₂ WS ₄ from X-Ray Diffraction	page S2
Comparison of the ³³ S Chemical Shift Tensors with the	
^{77}Se and ^{17}O Tensors for $(NH_4)_2WSe_4$ and K_2WO_4	page S6
References	page S9

Differences in Crystal Structures for (CH₃NH₃)₂WS₄ and (NH₄)₂WS₄ from X-Ray Diffraction

The environments of S atoms as determined from X-ray diffraction studies of the crystal structure for the two compounds $(CH_3NH_3)_2WS_4^{-1}$ and $(NH_4)_2WS_4^{-2}$ are illustrated below. Note that the numbering scheme has been chosen on the basis of the crystal structure of $(CH_3NH_3)_2WS_4$ [1].

Some further information:

(CH₃NH₃)₂WS₄, space group *Pnma*

Bond distances (Å): W-S1: 2.1862(13), W-S2: 2.199(2), W-S3: 2.2010(18)

Bond angles: S1-W-S1: 108.46(7), S1-W-S2: 108.62(5), S1-W-S3: 110.45(5), S2-W-S3: 110.18(8) Eight S…H contacts (neglecting two C-H…S) with N-S separations between 3.227(7) and 3.562(1) Å, and corresponding N-H…S angles ranging from 121 to 152°.

(NH₄)₂WS₄, space group *Pnma*

Bond distances (Å): W-S1: 2.1870(7), W-S2: 2.1856(11), W-S3: 2.2090(10)

Bond angles: S2-W-S1 109.25(3), S1-W-S1 108.23(4), S2-W-S3 110.33(4), S1-W-S3 109.87(2)

Thirteen S…H contacts with N-S separations between 3.242(4) and 3.633(4) Å, corresponding angles: $118 - 149^{\circ}$.

In the following figures the environments of the different S atoms are shown. S-W bonds are neglected. Note that in all drawings the lines between the atoms do not indicate direct bonding interactions. They are drawn for a better visualization of the environments and their changes going from $(NH_4)_2WS_4$ to $(CH_3NH_3)_2WS_4$.

These figures support the assignment of the S-sites to the 33 S MAS NMR signals, i.e., the S2 atom is most affected when one H atom is substituted by a CH₃ group.

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2009

The environment around the S1 and S2 atoms in the structure of $(NH_4)_2WS_4$.

The environment around the S1 and S2 atoms in the structure of (CH₃NH₃)₂WS₄.

S1 environment in the $(CH_3NH_3)_2WS_4$ compound (left) and in $NH_4)_2WS_4$ (right)

S1 in $(CH_3NH_3)_2WS_4$ including S-C contacts up to 4 Å

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2009

S2 in (CH₃NH₃)₂WS₄ (left) and in (NH₄)₂WS₄ (right)

S2 in (CH₃NH₃)₂WS₄ with C atoms up to 4 Å

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2009

S3 in (CH₃NH₃)₂WS₄ (left) and in (NH₄)₂WS₄ (right)

S3 in $(CH_3NH_3)_2WS_4$ with C up to 4 Å

Comparison of the 33 S chemical shift tensors with the 77 Se and 17 O tensors for $(NH_4)_2WSe_4$ and K_2WO_4

It is of interest to compare the anisotropic and isotropic ³³S chemical shift parameters (and their assignments) for the three nonequivalent S atoms in the WS_4^{2-} ion of (I) and (II) determined in the present study with the corresponding parameters recently reported for the three nonequivalent ⁷⁷Se (spin I = 1/2) atoms in the WSe_4^{2-} ion of (NH₄)₂WSe₄,³ which is isostructural (*Pnma*)⁴ with (I) and (II). In this report³ the ⁷⁷Se chemical shift tensors are presented using the convention of principal

axis components (δ_{xx} , δ_{yy} , δ_{zz}) of the tensors. For a convenient comparison of these data with the parameters listed for (I) and (II) in Table 1 of this work, we have converted these principal axis components for the tensors to the representation used here (δ_{σ} , η_{σ} , δ_{iso}) employing the definitions given in the Experimental Section, Eqs. (1) – (4), of the full article. The converted data are summarized below in Table 1 of this Supporting Information along with the parameters for (I) and (II). Most importantly, this has allowed us to assign the experimental data reported for (NH₄)₂WSe₄ in rows **15b** and **15c** of Table 3 in reference³ to the Se(3) and Se(2) sites,

Table 1. Comparison of the chemical shift anisotropic and isotropic parameters (δ_{σ} , η_{σ} , δ_{iso}) for ³³S in (CH₃NH₃)₂WS₄ (I) and (NH₄)₂WS₄ (II) determined in the present study with the corresponding ⁷⁷Se and ¹⁷O parameters earlier reported for (NH₄)₂WSe₄³ and K₂WO₄,⁶ respectively (see text).

Compound/sites	δ_{σ}	η_{σ}	$\delta_{\rm iso}$	Ref.
$(CH_{2}NH_{2})_{2}WS_{4}(I)$	(ppm)		(ppm)	
(C1131(113)) = 0.054(1)	401	0.11	545 2	TI : 1
S(1,1)	401	0.11	545.3	This work
S(2)	344	0.10	473.1	—
S(3)	383	0.25	491.5	_
$(NH_4)_2WS_4$ (II)				
S(1,1)	389	0.16	542.3	5
S(2)	380	0.05	495.8	—
S(3)	396	0.35	518.7	_
(NH ₄) ₂ WSe ₄				
Se(1,1)	926 (398) ^a	0.03	1338 (562) ^b	3
Se(2)	864 (372) ^a	0.01	1155 (485) ^b	_
Se(3)	892 (384) ^a	0.32	1256 (527) ^b	-
K_2WO_4				
O(1,1)	220	0.15	437	6
O(2)	214	0.30	422	_
O(3)	227	0.22	429	_

^a Value in parenthesis is the experimental value scaled by a factor of 0.43 (see text).

^b Value in parenthesis is the experimental value scaled by a factor of 0.42 (see text).

respectively, as reported in the crystal structure work.⁴ These sites are identical to the convention used for the S(3) and S(2) sites in the crystal structure of (I)¹ and thus for both (I) and (II) in Table 1. With this assignment it is seen from Table 1 that not only the ⁷⁷Se isotropic chemical shifts (δ_{iso}) but also the highly precise ⁷⁷Se chemical shift anisotropy (CSA) parameters (δ_{σ} and η_{σ}) for (NH₄)₂WSe₄ follow the same order as do these parameters for the S(1,1), S(2), and S(3) sites in (I) and (II), except for S(3) in (II) for which the δ_{σ} value is slightly larger than δ_{σ} for S(1,1). For (NH₄)₂WSe₄ we note that the three δ_{σ} (⁷⁷Se) values are about a factor 2 larger than the corresponding ³³S values for (I) and (II), in agreement with the general observation of a larger span in chemical shift for the heavier atom. To obtain a "closer" comparison of the ³³S and ⁷⁷Se parameters (δ_{σ} and δ_{iso}) for (NH₄)₂WSe₄ (II) and (NH₄)₂WSe₄ we have calculated scaling factors for δ_{σ} (⁷⁷Se) and δ_{iso} (⁷⁷Se) by taking ratios of the average values for the three δ_{σ} and δ_{iso} values for the two compounds. For δ_{σ} (⁷⁷Se) this gives a scaling factor of 0.43 and for δ_{iso} (⁷⁷Se)" values are shown in parentheses in Table 1 next to the real values. These values show good similarities with the values for the corresponding ³³S parameters in (I) and (II).

Finally, following the comparison of the ⁷⁷Se and ³³S chemical shift parameters, it also seems of interest to extend the comparison to the 25-years old ¹⁷O isotropic and anisotropic chemical shift data determined for this quadrupole (spin I = 5/2) in a sample of ¹⁷O-enriched K₂WO₄.⁶ It is noted that despite the fact that K₂WO₄ is not isostructural to (I), (II), and (NH₄)₂WSe₄, its crystal structure (C2/m) is very similar to those structures, i.e., with two nonequivalent oxygens (O(2) and O(3)) positioned on a mirror plane and two equivalent oxygens (O(1)) outside this plane for the WO_4^{2-} ion.⁷ This structure is also reflected by its ¹⁷O MAS NMR spectrum,⁶ which shows an appearance similar to those for the ³³S and ⁷⁷Se spectra of the ammonium WS_4^{2-} and WSe_4^{2-} salts, respectively. The ¹⁷O principal axis components reported for the three ¹⁷O chemical shift tensors⁶ have been converted to the (δ_{σ} , η_{σ} , δ_{iso}) representation (Table 1), similar to the ⁷⁷Se chemical shift data, and are arranged in Table 1 (Supporting Information) according to the same order for $\delta_{iso}(^{17}O)$ as observed for $\delta_{iso}(^{33}S)$ and $\delta_{iso}(^{77}Se)$, and the oxygens then numbered similar to S and Se atoms; (it is noted that this numbering does not correspond to that used for the crystal structure of K_2WO_4 .⁷ The trend observed for the ¹⁷O parameters in Table 1 generally conform to the discussion above for the ³³S and ⁷⁷Se parameters. In particular, the magnitudes observed for $\delta_{\sigma}(^{17}\text{O})$ follow the order $\delta_{\sigma}(^{17}\text{O}) <$ $\delta_{\sigma}(^{33}S) < \delta_{\sigma}(^{77}Se)$ in accordance with the heavy-atom effect observed above for $\delta_{\sigma}(^{33}S)$ and $\delta_{\sigma}(^{77}Se)$ in the WS₄²⁻ and WSe₄²⁻ ions. However, since the three sets of $\delta_{\sigma}(^{17}\text{O})$ and $\eta_{\sigma}(^{17}\text{O})$ values for the three nonequivalent oxygens are quite similar it is noted that the precision of these data is most likely somewhat lower compared to the other data in Table 1 as a result of the method used at that

time for extraction of the chemical shift anisotropies (the method of Herzfeld and Berger⁸).⁶ Although the data for K₂WO₄ represent the first reported example of ¹⁷O chemical shift anisotropies it is unfortunate that in this very early study⁶ it was not possible to determine the magnitudes of the small ¹⁷O quadrupole coupling parameters (C_Q , η_Q) for the three ¹⁷O sites in K₂WO₄. Clearly it would have been of interest to compare these parameters with the ³³S quadrupole coupling data determined in the present study for the corresponding WS₄²⁻ ions.

References

- 1 B. R. Srinivasan, C. Näther and W. Bensch, Acta Cryst. 2008, E64, m296.
- 2 B. R. Srinivasan, M. Poisot, C. Näther and W. Bensch, Acta Cryst. 2004, E60, i136.
- 3 B. A. Demko, K. Eichele and R. E. Wasylishen, J. Phys. Chem. A, 2006, 110, 13537.
- 4 A. Müller, B. Krebs and H. Beyer, Z. Naturforsch. 1968, 23B, 1537.
- 5 H. J. Jakobsen, A. R. Hove, H. Bildsøe, J. Skibsted and M. Brorson, *Chem. Commun.* 2007, 1629.
- 6 S. Schramm and E. Oldfield, J. Am. Chem. Soc. 1984, 106, 2502.
- 7 A. S. Koster, F. X. N. M. Kools and G. D. Rieck, Acta Cryst. 1969, B25, 1704.
- 8 J. Herzfeld and A. E. Berger, J. Chem. Phys. 1980, 73, 6021.