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[A] Brief Review of Radial Basis Function Neural Networks. 

 
Suppose that N observations yi have been made at locations xi = (xi

1, xi
2, ..., xi

d) 

i=1,2,...,N. The activation function, denoted ϕ and acting on the hidden layer in a RBFNN, is a 

positive-definite function of the distance r to a “RBF centre” ci (hence the name “radial basis 

function”) 

         ( ) ( ) 0  ),(, >=−= rrii ϕϕϕ cxcx  (A1) 

where x is an arbitrary input vector (of feature values), and the centres ci are the input 

vectors present in the training set, i.e. ci = xi, i=1,2,…, N. Many different types of radial basis 

function exist, for example:  

( ) rr =ϕ   (linear) 

( ) 3rr =ϕ   (cubic) 

( ) ( )0  ,22 >+= γγϕ rr   (multiquadric) (A2) 

( ) rrr log2=ϕ   (thin plate spline) 

along with many others. In this paper thin plate splines are used. With the activation 

functions in the hidden layer defined, the prediction made by a RBFNN, ( )xŷ  is written as  

                  ( ) ( ) i

N

i

iy βϕ∑
=

=
1

,ˆ xxx  (A3) 

where β = (β1, β2 ,…, βN) is the vector of weights defining the linear mapping from the hidden 

layer to the output. By requiring the prediction to be equal to the true values at the training 

points,  

       ( ) Njy
N

i

j
i

ij ,...,2,1   ,,
1

==∑
=

βϕ xx  (A4) 

we achieve exact interpolation of the training points. This leads to a system of linear 

equations 
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                           yΦβ =    (A5) 

where Φ is the N x N matrix whose i-jth element is φ(xi, xj), and y is the N x 1 vector whose 

ith entry is yi. Simple matrix inversion, 

                         yΦβ 1−=              (A6) 

then gives the weight vector β. The non-singularity of Φ is guaranteed by Micchelli’s 

theorem1.  

 
 
 
 
[B] Brief Review of Kriging. 

Experts in computational chemistry, not familiar with Kriging, will benefit from the 

following compact, yet detailed and accessible account, which is based on Jones’ exposition in 

reference2.  As in Section 2.5, suppose that N observations yi (of a particular multipole 

moment) have been made at locations xi = [xi
1, xi

2, ..., xi
d]T where T denotes the transpose,  

i=1,2,...,N and d is the dimensionality of the feature spacea. In our case, x is the vector of 

features describing a particular water cluster configuration. Then these observations are 

modelled as having been generated from the following model: 

i

h

i
hh

i fy εβ += ∑ )()( xx   i=1,2,...,N (B1) 

         Each fh(xi) is a function of the feature space of the problem, where f(xi) is a polynomial 

term of the form x1
g1x2

g2 … xd
gd while g1+g2+…+gd ≤ gmax  and gmax is the order of the 

polynomial. In this work, the feature space consists of polar and Euler coordinates defining 

the configuration of water molecules, as detailed in Section 3. The summed term on the right 

hand side may be seen as a global trend (over feature space) for the observable y (in our 

case a multipole moment). The ε terms may be viewed as normally distributed random 

variables (with mean zero). They are “error terms” compensating for the inadequacy of the 

global term in modelling the observed values exactly. Therefore the ε terms are really 

collections of terms in x, and may be written ε(x). However, as shall become clear below, this 

is the focus of the Kriging method. 

          Now consider two distinct observations yi and yj, made at xi and xj, respectively. If xi 

and xj are close together (in feature space), then the errors ε(xi) and ε(xj) should be close 

                                                 
a The vector xi is introduced here as a column vector although this point is not essential in the 
account below. 
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together – that is to say they are correlated, and this correlation may be parameterised in 

several different ways. One common way for parameterizing the correlation between the 

error terms is through the exponential power correlation function: 

⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

=

d

h

pji
h

ji h

hh
xxCor

1
||exp)](),([ θεε xx   (B2) 

where θh > 0 and 0 < ph ≤ 2.  This correlation function is a N x N matrix whose i-jth entry is 

Cor[ε(xi),ε(xj)]. It is convenient to denote this matrix by R. This correlation function has the 

intuitive property that if the distance between xi and xj is small then the correlation is close to 

one. On the other hand, if the distance between xi and xj is large, the correlation will 

approach zero. In other words, similar water configurations have similar multipole moment 

values.  

          Modelling the correlation in this way is so effective that the global terms in eq.(B1) 

may be replaced by a single constant term. Thus the observations are modelled as having 

been generated from the following model: 

)()( iiy xx εμ +=   i=1,2,...,N   (B3) 

where µ models the global trend of the observable y, and ε(xi) is a Gaussian distribution with 

mean 0 and some variance σ2, the correlation between observations at xi and xj being given 

by Eq.(B2). So there are 2d+2 parameters to be determined: µ, σ2, θ=(θ1,θ2,...,θd) and 

p=(p1,p2,...,pd) where d is the dimension of the feature space (the number of descriptors 

used to describe a water cluster configuration). These parameters are determined by 

maximizing the likelihood of the observations in the training set. Denoting the vector of 

observations by y=[y1, y2,..., yN]T and using the correlation matrix R, the likelihood of the 

training data is given by the N-variate Gaussian distribution, 

   
( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡ −−
−==

−

2

1T

2/12/22/
i

2
exp

)()2(
1 N)1,2,...,  i; y|µ,,,(

σ
μμ

σπ
σ 1yR1y

R
pθ

NN
L        (B4) 

which is the N-dimensional generalisation of the univariate Gaussian distribution. The symbol 

1 represents [1,1,…,1]T. Since all computational expense would be in inverting R, savings can 

be made by a LUD decomposition of R and evaluating R-1(y-1μ) in our implementation.  

        To illustrate the principle, consider the unrealistic case of having just two observations 

y1 and y2 (N=2). Then the likelihood function is given by the bivariate Gaussian distribution, 

which is shown in Figure B1. The set of two observations is represented by a point in the XY 

plane, where X and Y are two random variables. Observation y1 is modelled to be an 

occurrence of random variable X and y2 of random variable Y. In our case, an observation is a 

multipole moment value. The dimensionality d is not determined in this example but of 

Electronic Supplementary Material for PCCP
This journal is © The Owner Societies 2009



 4

course appears in eq.(B2) and hence is involved in determining Cor(X,Y), which features in 

this Figure. It is the purpose of maximum-likelihood estimation to vary the parameters of the 

bivariate Gaussian, such that this point lies in the region of highest likelihood, since the 

observations are fixed and the parameters are being varied. For example, varying the 

parameters θ and p influences the correlation between the random variables X and Y 

representing our two observations, as shown in Figure B1.  Certain values of θ and p lead to 

a high correlation between X and Y (Fig. B1(a)), whereas other values lead to a low 

correlation (Fig. B1(b)). Varying the correlation influences the shape of the likelihood 

function. Given two observations (i.e. a point in the XY plane), θ and p (along with µ and σ2) 

are varied to give a likelihood function such that the value of the likelihood at the point 

representing the two observations is maximised.       

 
 
 
Figure B1  

Bivariate Gaussian distributions for two random variables X and Y that are (a) strongly 

correlated (Cor(X,Y) = 0.98) and (b) weakly correlated (Cor(X,Y) = 0.2). The colour legend 

on the right indicates the value of the likelihood function. Note that μ is arbitrarily set to 0.5 

in both cases. 

 
 

 

Returning to the general case of N observations, it is the log-likelihood, readily obtained from 

eq.(B4), 

                
( ) ( )

2

1T
2

2
)log(

2
1)log(

2 σ
μμσ 1yR1yR −−

−−−
−N

     (B5) 

a b 
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which is maximised in practice (note that constant terms have been dropped, as they do not 

affect the outcome of optimisation). Furthermore, by setting the derivatives of the log-

likelihood with respect to σ2 and µ equal to zero and solving this new equation, the optimal 

values of σ2 and µ can be written in terms of θ and p. Hence, L only needs to be optimised 

with respect to θ and pb.  The optimisation of eq.(B5) may be carried out by any means, but 

popular choices include the Nelder-Mead simplex algorithm3, genetic algorithms4, and branch-

and-bound algorithms5. As the evaluation of eq.(B5) requires the inversion of a N x N matrix, 

efficiency is of great importance if the number of observations N is large (in this work, N is 

set to maximum 1000). In this paper, we use Nelder-Mead algorithm, with up to 8 restarts. 

As Nelder-Mead is a downhill search method, restarting the algorithm after it seems to have 

converged reduces the risk of having converged to a local optimum of the likelihood function.  

Having determined the parameters of the N-variate Gaussian distribution that 

maximise the likelihood of the observed training data, the question arises of how they may be 

used to make a prediction ŷ(x*) of y at an unevaluated point x* in feature space. Consider 

adding (x*, ŷ(x*)) to the training set, and denote by L* the likelihood function augmented 

with this extra observation. Now instead of considering L* as a function of θ, p, µ and σ with 

the training data fixed, consider L* with everything fixed (the training data, the position of 

x*, and θ, p, µ, σ at their previous optimal values, θ*, p*, µ*,σ*) except the value of ŷ (x*).  

Then L* is a function of ŷ(x*), and a good value of ŷ(x*) to predict is the value that 

maximises L*: this is the value that is most consistent with the pattern of variation observed 

in the training set. 

          To aid with notation, denote by r the vector of correlations of the Gaussian Process at 

x* with the Gaussian Process at the points in the training set r=( Cor(ε(x*),ε(x1)), 

Cor(ε(x*),ε(x2)) ,…, Cor(ε(x*),ε(xN)) )T.  Then the (N+1)x(N+1) correlation matrix 
~
R  for the 

augmented data set is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

~

Tr
rR

R     (B6)   

From Eq.(B5) it can be seen that the only part of the augmented log-likelihood function that 

depends upon ŷ(x*) is  

( ) ( )
2

1T

*2
*~~*~

σ
μμ 1yR1y −−

−
−

    (B7)   

where TT *))(ˆ (~ xyy y= . Substituting in the expressions for y~ and R~ , Eq.(B7) becomes: 

                                                 
b Note that in the main text Θ (capital theta) was used to refer to all k Kriging parameters. So, 
Θ=(θ,p) and k=2d. 
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To determine the value of ŷ(x*), the derivative of eq.(B8) with respect to ŷ(x*) needs to be 

set equal to zero.  Using the following identity for the inverse of a partitioned matrix6: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−
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        (B9) 

where 1)( −−−= CBDAM 1 , the expression for R~ , the expression for L* becomes: 

 

( ) ( ) ( ) )(ˆ without terms*)(ˆ
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Setting to zero the derivative with respect to ŷ(x*) of eq.(B10) gives: 

 

  ( ) ( ) 0
)1(*

*)*)(ˆ
1*
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Upon rearranging, this gives an expression for the value of ŷ(x*), 

 

*)(**)(ˆ 1T μμ 1yRrx −+= −y          (B12) 

 

This is the master equation, i.e. the Kriging prediction for the value of the observable at x*. 

This may be rewritten in the (simpler to program) format: 

( )∑
=

−+=
N

ii

i
iay xxx ***)(ˆ ϕμ   (B13) 

where ia  is the i-th element of *)(1 μ1yR −− , and ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−=− ∑

=

d

h

pi
h

i h

hh
xx

1

* ||exp* θϕ xx    is the  

i-th element of r (defined just before eq. B6). 
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