Supplementary data

A theoretical study of the rearrangement processes of energized CCCB and CCCAl. Tianfang Wang and John H. Bowie*

Department of Chemistry, The University of Adelaide, South Australia, 5005

* Corresponding author. e-mail: john.bowie@adelaide.edu.au

Tables 3-7 contain data concerning the geometries [UB3LYP/6-311+G(3df) level of theory] and single point energies [calculated at UCCSD(T)/aug-cc-pVTZ] of all minima and transition states shown in the appropriate Figures in the text. Energies (in hartree and kJ mol⁻¹) at the lower UCCSD(T)/aug-cc-pVDZ//UB3LYP/6-31+G(d) level of theory are indicated in parenthesis for comparison purposes. Geometric data are not included at this level of theory. Tables 8-9 contain data concerning the geometries [UX3LYP/cc-pVTZ or UBMK/cc-pVTZ levels of theory] and single point energies [calculated at UCCSD(T)/aug-cc-pVTZ] of selected minima. Relative energies obtained by subtraction of corrected hartree energies are recorded in kJ mol⁻¹ units in all tables. Standard enthalpies of formation [UCCSD(T)/aug-cc-pVTZ//UB3LYP/6-311+G(3df) level] are contained in Table 10, and charge distributions of selected C₃B and C₃Al isomers are contained in Table 11 and 12.

Table 3. Minima and Transition Structures on the Quartet C₃B Surface Calculated at the UB3LYP/6-311+G(3df) Level of Theory, with Single Point Energies (Including Zero-Point Energy Correction) Calculated at UCCSD(T)/aug-cc-pVTZ

	C ₁ C ₂ C ₃ B	B.	B /	BC1		C ₃ C ₁		C_2 C_1 B	$C_3 \xrightarrow{B} C_1$	C ₃	C ₃ C ₂ BC ₁
		$C_3 - C_2 - C_1$	$C_3 - C_2 - C_1$	$C_3 - C_2$	C ₃	BC ₂		- C3	C ₂	$B \longrightarrow C_2 \longrightarrow C_1$	
	⁴ A	$TS^{4}A/^{4}D$	⁴ D	$TS ^{4}D/^{4}H$	⁴ H	$TS^{4}A/^{4}G$	TS ⁴ H/ ⁴ G	⁴ G	$TS^{4}H/^{4}B$	$TS {}^{4}G/{}^{4}B$	⁴ B
State	4Σ	⁴ A	⁴ A"	⁴ A"	4A"	⁴ A"	⁴ A	⁴ A"	⁴ A"	⁴ A"	⁴ A
Symmetry	$C_{\infty V}$	C_1	Cs	Cs	Cs	Cs	C_1	C_{2V}	Cs	Cs	$C_{\infty V}$
Energy (Hartree)	-138.55013 (-138.44884) ^a	-138.51650 (-138.41617)	-138.51885 (-138.41808)	-138.51807 (-138.41732)	-138.53817 (-138.43526)	-138.49098 (-138.39043)	-138.50209 (-138.40399)	-138.51868 (-138.41549)	-138.47976 (-138.38057)	-138.45362 (-138.35582)	-138.51861 (-138.42170)
Energy Relative to ⁴ A (kJ mol ⁻¹)	0	88.3 (85.7)	82.0 (80.7)	84.1 (82.8)	31.4 (35.5)	155.2 (153.0)	126.0 (117.5)	81.5 (87.4)	184.7 (178.9)	253.5 (244.1)	82.8 (71.1)
Dipole Moment (Debye)	3.9473	3.2388	2.5327	1.5085	0.1897	1.9949	0.3350	0.0986	2.2269	3.1030	4.2137
Bond Lengths (A)	1 201	1 210	1 224	1 2 1 2	1 255	1 202	1 429	1 274	2 170	1 200	
C1C2 C2C3	1.301	1.319	1.524	1.512	1.555	1.302	1.438	1.374	2.170	2 050	1 278
C3B	1 380	1 397	1 412	1 443	1.555	1 436	1.510	1.574	1 428	1 391	1.270
C1C3	1.500	1.577	1.112	1.115	1.017	1.920	1.010	1.476	1.120	3.081	
C1B				2.187	1.518		1.458		1.420		1.418
C2B		1.924	1.711	1.653	1.589	1.549			1.676	1.439	1.385
Bond Angles (°)											
C1C2C3	180.0	179.8	176.8	150.6	122.9	86.8	102.5	64.9		132.6	
C1C3C2		122 (100.0	04.4	(1.5	42.6		57.5	10.0	18.1	
CIC2B CIPC2		133.6	129.8	94.4	61.5 51.7				40.9	18.1	190.0
CIEC2 CIC3B				30.7	51.7			60.6	88.0		180.0
C1BC3					103 3		88.5	58.9			
C2C1C3						50.6				29.3	
C2C1B				48.9	66.9		79.2	118.1	50.6		
C2C3B	180.0	89.7	76.6	72.3	66.9	64.0	77.3		75.5	44.5	
C2BC3		43.7	50.0	51.5	51.7	59.5			48.9	92.8	
C3C2B		46.6	53.4	56.3	61.4	56.5				42.7	180.0
Dihedral Angles (°)		100.0	100.0	<u>^</u>	<u>^</u>	100.0	24.0	100.0	<u> </u>	100.0	
BC3C2C1	—	180.0	180.0	0.0	0.0	180.0	26.9	180.0	0.0	180.0	—
C1C2BC3		180.0	180.0	180.0	180.0	0.0	-145.3	0.0	180.0	0.0	

Table 4. Minima and Transition Structures on the Doublet C₃B Surface Calculated at the UB3LYP/6-311+G(3df) Level of Theory, with Single Point Energies (Including Zero-Point Energy Correction) Calculated at UCCSD(T)/aug-cc-pVTZ

	C ₁ C ₂ C ₃ -B	$C_1 \xrightarrow{C_2 \xrightarrow{B}} C_2$	$C_2 \xrightarrow{C_1} B$ C_3	C_1 C_2 C_3 B		$C_2 \xrightarrow{C_1} B$	C_3 $B - C_1$ C_2	$B \xrightarrow{C_1} C_2 \xrightarrow{C_1} C_3$	C ₃ -C ₂ -B-C ₁
	^{2}A	TS ² A/ ² H	² H	TS ² A/ ² G	TS ² H/ ² G	² G	TS ² H/ ² B	TS ² G/ ² B	${}^{2}\mathbf{B}$
State	^{2}A	^{2}A	² A'	$^{2}\text{A}'$	^{2}A	$^{2}\text{A}'$	^{2}A	^{2}A "	—
Symmetry	C_1	C_1	Cs	Cs	C_1	Cs	C_1	Cs	$C_{\infty V}$
Energy (Hartree)	-138.53113 (-138.43637) ^a	-138.51075 (-138.41421)	-138.55423 (-138.45111)	-138.49458 (-138.39310)	-138.51962 (-138.41518)	-138.56890 (-138.46675)	-138.50505 (-138.40882)	-138.48675 (-138.38023)	-138.51565 (-138.41846)
Energy Relative to ² A (kJ mol ⁻¹)	0	53.5 (58.1)	-60.7 (-38.5)	95.8 (113.7)	30.1 (55.6)	-99.2 (-79.8)	68.6 (72.3)	116.3 (147.1)	40.6 (46.8)
Dipole Moment (Debye) Bond Lengths (Å)	1.3307	1.7131	0.5529	1.0750	1.0679	2.4172	0.8293	2.5651	1.6581
C1C2	1.316	1.324	1.361	1.349	1.318	1.435		1.717	
C2C3	1.268	1.312	1.361	1.364	1.491	1.435	1.274	1.310	1.284
C3B	1.503	1.603	1.574	1.564	1.533	1.482	1.516	• • • • •	
C1C3		2 2 2 1	1 575	1.435	1 507	1.492	1 510	2.886	1 502
		2.331	1.5/5	2.748	1.527	1.482	1.518	1.443	1.503
C2D Bond Angles $\binom{0}{2}$		2.008	1.519				1.517	1.420	1.577
C1C2C3	174.2	138.4	132.0	63.9	92.4	62.6		144 5	
C1C3C2	171.2	150.1	152.0	57.6	40.4	58.7		20.2	
C1C2B		86.2	66.0		50.1			53.7	
C1BC2		34.5	52.2		41.5		155.2	73.5	180.0
C1C3B				132.7	48.3	59.8			
C1BC3			104.3	22.6	83.1	60.4	155.1		
C2C1C3					47.2	58.7		15.3	
C2C1B		59.3			88.4	118.5		52.85	
C2C3B	150.7	86.5		169.7	82.3		65.2		
C2BC3 C2C2B		40./			4/.9		49./	1(1.0	190.0
UJU2B Dihadral Anglas (⁰)		52.8			49.8		05.1	101.8	180.0
BC3C2C1	180.0	11.8	0.0	180.0	28.9	0.0	0.0	180.0	
C1C2BC3	180.0	-172.2	180.0	0.0	-141.0	180.0	180.0	180.0	_

Table 5. Minima and Transition Structures on the Doublet C3Al Surface Calculated at the B3LYP/6-311+G(3df) Level of Theory, with Single Point Energies (Including Zero-Point Energy Correction) Calculated at UCCSD(T)/aug-cc-pVTZ

	CCaAl	C ₁ AI	$C_2 \downarrow C_1 \rightarrow AI$	C3 AI	C_2 AI		C ₃ Al	C_2 AI— C_1		
	² A	$TS^2A/^2G$	^{2}G	$TS^{2}A/^{2}H$	C ₃ TS ² G/ ² H	² H	$TS^{2}H/^{2}E$	² E	$TS^{2}E/^{2}B$	² B
State	² A"	² B ₂	² A'	² A'	² A ₂	² A"	² A'	² B ₂		² A"
Symmetry	Cs	C_{2V}	Cs	Cs	C _{2V}	Cs	Cs	C_{2V}	$C_{\infty V}$	Cs
Energy (Hartree)	-355.86101 (-355.75938) ^a	-355.81649 (-355.71539)	-355.86550 (-355.76184)	-355.85276 (-355.75215)	-355.84188 (-355.74031)	-355.85379 (-355.75299)	-355.73423 (-355.63634)	-355.74974 (-355.64623)	-355.71962 (-355.60162)	-355.72342 (-355.61101)
Energy Relative to ² A	, ,	115.5	-12.1	21.8	50.2	18.8	333.0	289.0	371.1	361.0
$(kJ mol^{-1})$	0	(115.4)	(-6.3)	(18.8)	(50.2)	(16.7)	(322.7)	(296.8)	(408.4)	(389.2)
Dipole Moment (Debye)	3.8556	3.2413	1.0615	1.7848	1.6006	1.2148	4.7498	3.4632	5.0387	2.4167
Bond Lengths (Å)										
C1C2	1.317	1.342	1.347	1.309	1.316	1.308	2.805			
C2C3	1.265	1.402	1.347	1.303		1.308	1.262	1.267	1.272	1.243
C3Al	2.017	2.056	2.141	2.194	2.190	2.327	1.878	1.892	1.788	1.820
C1C3			1.533							
C1Al		3.355	2.140	2.643		2.327	1.963	2.054	1.012	1.902
C2Al				2.347		2.310	1.935	1.892		
Bond Angles (°)										
C1C2C3	179.9	61.4	69.4	154.7	118.6	148.6	112.6			
C1C3C2		57.2	55.3							
C1C2AI				87.8		74.3	44.4	1.00.4		
		151 4	(0.0	29.7		32.8	92.0	160.4		
CIUSAI		151.4	09.0 42.0	(2)	(2.2	(5.5	120.7		190.0	170 4
CIAICS C2C1C3		11.5	42.0	02.8	02.2	03.5	130.7		180.0	1/9.4
		78 5	124.3	62.6	89.6	72 0	13.6			
	179.4	151.4	124.3	79.9	89.6	72.9	73.2	70.4	180.0	179 5
C2AIC3	177.4	101.4	124.5	33.1	07.0	12.9	38.6	39.1	100.0	177.5
C3C2Al				55.1		74 3	68.2	57.1		
Dihedral Angles (°)						, 1.5	00.2			
AlC3C2C1	0.0	180.0	180.0	0.0	0.0	0.0	0.0	0.0	_	0.0
C1C2AIC3	180.0	0.0	0.0	-180.0	180.0	-180.0	180.0	180.0	_	0.0

Table 6. Minima Structures on the Quartet C₃Al Surface Calculated at the UB3LYP/6-311+G(3df) Level of Theory, with Single Point Energies (Including Zero-Point Energy Correction) Calculated at UCCSD(T)/aug-cc-pVTZ

	C4				C_1 C_2 Al	C_2 AI-C ₁	C ₂ -C ₂ -AlC ₁
	4 A	4C	4G	4 F	⁴ H	−3 4 F .	⁴ B
State	⁴ Σ	4A2	4A"	4A"	⁴ A"	4A2	4A"
Symmetry	$C_{\infty V}$	C _{2V}	Cs	Cs	Cs	C_{2V}	Cs
	-355.81666	-355.77916	-355.79101	-355.78889	-355.82328	-355.77747	-355.74613
Energy (Hartree)	$(-355.71434)^{a}$	(-355.67690)	(-355.69359)	(-355.68203)	(-355.71459)	(-355.67386)	(-355.64647)
	^	98.3	62.8	72.8	-17.6	102.9	185.4
Energy Relative to 'A (kJ mol')	0	(98.2)	(54.2)	(84.9)	(-0.8)	(106.2)	(178.1)
Dipole Moment (Debye)	8.2012	3.6262	2.0958	3.9989	3.2751	3.5680	5.1272
Bond Lengths (Å)							
C1C2	1.30173	1.324	1.358	1.361	1.322		
C2C3	1.28410	1.415	1.358	1.361	1.322	1.265	1.256
C3Al	1.79564	1.919	1.951	1.926	1.992	1.886	1.785
C1C3		1.415	1.490				
C1Al			1.952	1.926	1.992	1.896	1.889
C2Al					1.980	1.886	
Bond Angles (°)							
C1C2C3	180.0	62.1	66.6	85.3	142.1		
C1C3C2		55.8	56.7				
C1C2AI					71.1	1.00.1	
C1AIC2		1.50.1			38.9	160.4	
CIC3AI		152.1	67.6	57.0	77.0		170 4
CIAIC3			44.9	57.2	//.8		1/9.4
			56./	07.0	70.0		
	190.0		124.3	97.9	/0.0	70.4	172 6
	180.0		124.5	97.9	70.0	70.4	1/5.0
					38.9 71.1	39.2	
CSC2AI Dibodral Anglas (⁰)					/1.1		
AlC3C2C1	_	180.0	0.0	38.4	0.0	0.0	0.0
C1C2AIC3	_	0.0	180.0	-125.6	180.0	180.0	180.0

Table 7. Transition Structures on the Quartet C₃Al Surface Calculated at the UB3LYP/6-311+G(3df) Level of Theory, with Single Point Energies (Including Zero-Point Energy Correction) Calculated at UCCSD(T)/aug-cc-pVTZ

	C1 C2-C2-AI	$C_2 C_1$	Al C1-C2-C3		C_2 AI	$C_3 \xrightarrow{Al} C_2 \xrightarrow{C_1} C_1$	C ₂ Al—C ₁
	$TS ^{4}A/^{4}C$	TS ⁴ C/ ⁴ G	$TS^{4}A/^{4}H$	TS ⁴ G/ ⁴ F	TS ⁴ F/ ⁴ H	$TS^{4}H/^{4}E$	TS ${}^{4}E/{}^{4}B$
State	⁴ A"	⁴ A"	⁴ A"	⁴ A	⁴ A	⁴ A"	⁴ A"
Symmetry	C _S	C _S	C _S	C_1	C ₁	C_{S}	Cs
Energy (Hartree)	-355.77642 (-355.67512) ^a	-355.77889 (-355.67562)	-355.79972 (-355.69777)	-355.78268 (-355.67604)	-355.78163 (-355.67592)	-355.71507 (-355.61276)	-355.74490 (-355.64894)
Energy Relative to ⁴ A (kJ mol ⁻¹)	105.8 (102.8)	99.1 (101.6)	44.3 (43.5)	89.0 (100.3)	92.0 (100.7)	266.3 (266.3)	188.1 (171.4)
Dipole Moment (Debye) Bond Lengths (Å)	5.4164	5.4211	5.6806	4.1200	3.4073	4.4521	5.1752
C1C2	1.313	1.308	1.309	1.311	1.303	2.500	1.258
C2C3	1.342	1.913	1.322	1.412	1.425	1.277	1.782
C3Al	1.818	1.855	1.844	1.861	1.900	1.873	
C1C3	1.847	1.474					
C1Al		1.980	3.350	2.009	2.021	1.916	1.889
C2Al			2.397			2.006	2.958
Bond Angles (°)							
C1C2C3	88.2	50.3	176.607	77.8	106.8		
C1C3C2	45.3	43.0		48.5			
C1C2Al			126.852		61.9	48.8	
C1AlC2	10.1.1			(0 0	34.7	79.2	
C1C3Al	134.4	72.0		68.3	24.7		170.0
CIAIC3		45.0		52.4	34.7		1/9.8
	46.6	86./	24.025	53./	02.5	52.0	
			34.925	111./	83.5	52.0	153.0
C2C3AI C2A1C2			97.074	115.5	85.1	/0.3	152.8
U2AIU3 C2C2A1			33.1/1		38.0 56.2	38.3 65 2	11.2
USUZAI Dihadral Anglas (⁰)					50.5	03.2	10.0
AlC2C2C1	180.0	0.0	0.0	15.1	37.5	0.0	0.0
C1C2AIC3	0.0	180.0	180.0	-157.8	-138.6	<u>18</u> 0.0	180.0

Table 8. Selected Minima Structures of Doublet and Quartet C₃B Calculated Using UX3LYP and UBMK (in parentheses) Methods with cc-pVTZ Basis Set. Single Point Energies (Including Zero-Point Energy Correction) Calculated at UCCSD(T)/aug-cc-pVTZ

	C₁—C₂→ _{C3} →B	C ₁ C ₂ C ₃ B	$C_2 \xrightarrow[C_3]{C_3} B$	$C_2 \xrightarrow[C_3]{C_1} B$	$C_2 \xrightarrow{C_1} B$ C_3	$C_2 \xrightarrow{C_1} B$ C_3
	^{2}A	⁴ A	² G	⁴ G	2 H	⁴ H
State	² A"	4Σ	² A'	${}^{4}\mathrm{B}_{1}$	$^{2}A'$	⁴ A"
Symmetry	Cs	$C_{\infty V}$	Cs	C_{2V}	C_{2V}	C_{2V}
Energy (Hartree)	-355.86080 (-355.86082)	-355.81663 (-355.81632)	-355.86546 (-355.86467)	-355.78159 (-355.78208)	-355.82519 (-355.78767)	-355.82340 (-355.82365)
Energy Relative to ² G (kJ mol ⁻¹)	$+12.2(+10.1)^{a}$	+128.2 (+126.9)	0 (0)	+220.2 (+216.8)	+117.7 (+116.5)	+110.4(+107.7)
Dipole Moment (Debye)	1.2576 (0.9320)	3.8682 (3.8931)	2.3755 (2.3998)	0.1446 (0.1109)	0.5205 (0.6491)	0.1521 (0.2241)
Bond Lengths (Å)						
C1C2	1.317 (1.321)	1.301 (1.300)	1.435 (1.458)	1.374 (1.389)	1.361 (1.360)	1.355 (1.355)
C2C3	1.267 (1.261)	1.283 (1.284)	1.435 (1.460)			
C3B	1.506 (1.520)	1.380 (1.379)	1.482 (1.492)	1.501 (1.509)	1.576 (1.586)	1.519 (1.523)
C1C3			1.492 (1.545)	1.476 (1.525)		
C1B			1.482 (1.491)			
C2B					1.519 (1.549)	1.590 (1.625)
Bond Angles (°)		100.0		(10)((()))		100 000 (1
C1C2C3	174.5 (174.1)	180.0	62.6 (63.9)	64.9 (66.6)		122.93961
C1C3C2			58.7 (58.0)	57.5 (56.7)		
CIC2B CIDC2					66.1(65./)	61.5(60.7)
CIBC2 CIC2B			50 9 (59 9)	60.6(50.6)	52.1 (51.4)	51.0 (50.9)
CIC3B CIPC3			59.8 (58.8) 60 4 (62 4)	58 0 (60 7)		
			58.7(58.1)	58.9 (00.7)		
C2C1B			56.7 (56.1)			
C2C3B	151.4 (156.4)	180.0				
C2BC3	101.1 (100.1)	100.0				
C3C2B						
Dihedral Angles (°)						
BC3C2C1	180.0	_	0.0	0.0	0.0	0.0
C1C2BC3	180.0	_	180.0	180.0	180.0	180.0

^a The relative energies shown in parentheses refer to the UCCSD(T)/aug-cc-pVTZ//UBMK/cc-pVTZ level of theory.

Table 9. Selected Minima Structures of Doublet and Quartet C₃Al Calculated Using UX3LYP and UBMK (in parentheses) Methods with cc-pVTZ Basis Set. Single Point Energies (Including Zero-Point Energy Correction) Calculated at UCCSD(T)/aug-cc-pVTZ

	C ₁ C ₂ C ₃ AI	C ₁ C ₂ C ₃ AI	$C_2 \xrightarrow[C_3]{C_1} AI$	$C_2 \overset{C_1}{\underset{C_3}{\overset{l}{\overset{l}{\overset{l}{\overset{l}{\overset{l}{\overset{l}{\overset{l}{$	$C_2 \xrightarrow{C_1} AI$	C_2 Al
	² A	⁴ A	² G	⁴ G	² H	⁴ H
State	$^{2}A'(^{2}A)$	4Σ	$^{2}\text{A}'$	${}^{4}B_{1}({}^{4}A")$	${}^{2}B_{2}({}^{2}B_{1})$	⁴ A"
Symmetry	$C_{\infty V}$	$C_{\infty V}$	Cs	$C_{2V}(C_S)$	C _{2V}	$C_{S}(C_{2V})$
Energy (Hartree)	-138.53081 (-138.53233)	-138.55005 (-138.54997)	-138.56887 (-138.57089)	-138.51861 (-138.52072)	-138.55430 (-138.55492)	-138.53818 (-138.53840)
Energy Relative to ² G (kJ mol ⁻¹)	$+99.9(+101.2)^{a}$	+49.4 (+54.9)	0 (0)	+132.0(+131.7)	+38.3(+41.9)	+80.6(+85.3)
Dipole Moment (Debye)	3.7527 (3.6932)	8.0248 (8.3278)	0.9845 (1.0238)	2.0212 (4.4468)	3.4060 (3.4231)	3.2172 (3.3155)
Bond Lengths (Å)						
C1C2	1.318 (1.322)	1.302 (1.303)	1.346 (1.351)	1.357 (1.362)	1.332 (1.340)	1.322 (1.331)
C2C3	1.264 (1.262)	1.284 (1.284)	1.346 (1.352)	1.357 (1.368)		1.322 (1.331)
C3Al	2.020 (2.011)	1.799 (1.784)	2.147 (2.136)	1.960 (1.917)	2.013 (2.000)	2.000 (1.990)
C1C3			1.532 (1.618)	1.491 (1.798)		
C1Al			2.147 (2.134)	1.960 (1.919)		2.000 (1.990)
C2Al					1.974 (1.965)	1.986 (1.972)
Bond Angles (°)						
C1C2C3	180.0	180.0	69.3 (73.5)	66.7 (82.4)		142.5 (142.2)
C1C3C2			55.3 (53.2)	56.7 (48.7)		
C1C2Al					72.1 (71.7)	71.2 (71.1)
C1AlC2					39.0 (39.5)	38.7 (39.2)
C1C3Al			69.1 (67.6)	67.6 (62.1)		
C1AlC3			41.8 (44.5)	44.7 (55.9)		
C2C1C3			55.3 (53.3)			
C2C1Al						70.0 (69.7)
C2C3Al	180.0	180.0				70.0 (69.7)
C2AIC3						38.7 (39.2)
C3C2Al						
Dihedral Angles (°)						
AlC3C2C1	_	_	0.0	0.0	0.0	0.0
C1C2AlC3	_	_	180.0	180.0	180.0	180.0

^a The relative energies shown in parentheses refer to the UCCSD(T)/aug-cc-pVTZ//UBMK/cc-pVTZ level of theory.

	Structure	$\Delta_f H^o$ (298K)	Structure	$\Delta_f H^o$ (298K)
	⁴ A	1120.5	^{2}A	1171.9
	⁴ B	1204.2	${}^{2}\mathbf{B}$	1212.9
C_3B	⁴ D	1202.9	^{2}G	1069.8
	⁴ G	1202.1	2 H	1108.3
	${}^{4}\mathbf{H}$	1149.8		
	^{2}A	909.2	⁴ A	1050.2
	$^{2}\mathbf{B}$	1297.0	${}^{4}\mathbf{B}$	1237.6
	^{2}E	1226.7	⁴ C	1148.5
C ₃ Al	^{2}G	894.5	⁴ E	1153.5
-	$^{2}\mathrm{H}$	954.0	${}^{4}\mathbf{F}$	1121.7
			⁴ G	1117.1
			${}^{4}\mathbf{H}$	1030.9

Table 10. Standard enthalpies of formation [UCCSD(T)/aug-cc-pVTZ//UB3LYP/6-311+G(3df) level]^a

^a For a definition of structures, see Supplementary Table 3-7. Enthalpies of formation $\Delta_f H^o$ (298K) in kJ mol⁻¹.

	В	C_1	C_2	C ₃
CCCP	0.423	-0.366	1.367	-1.424
$C_1 C_2 C_3 B$	0.674	0.137	-0.273	-0.538
A	1.137	0.123	-0.296	-1.011
	0.326	-0.012	-0.303	-0.012
$C_2 \cap B$	0.322	-0.163	0.004	-0.163
⁴ G	1.194	0.068	-0.705	0.172
C ₁				
$C_{\alpha} - B$	0.605	-0.340	0.075	-0.340
	0.533	-0.183	-0.166	-0.184
Č ₃ 4 11	1.585	-0.862	0.432	-0.308
H	0 130	-0.625	0.080	-0.494
$C_1 - C_2 - C_2 - B$	0.150	0.225	-0.322	-0.494
^{2}A	0.824	0.172	-0.261	-0.739
	0.521	-0.079	-0.363	-0.079
	0.609	-0.322	0.034	-0.322
^{2}G	1.323	-0.720	0.112	-0.720
C ₁				
	0.598	-0.396	0.194	-0.396
\sim	0.523	-0.109	-0.304	-0.110
Ċ ₃	1.523	-0.961	0.399	-0.961
2 H				

Table 11. Charge Distribution of selected C_3B isomers [Mulliken charge¹ (given in normal print), NBO charge² (given in bold print), and AIM charge³ (given in italics print) are shown in the table respectively].^a

^a (1) R. S. Mulliken, *J. Chem. Phys.*, 1955, **23**, 1833-1840; I. G. Csizmadia, Theory and Practice of MO Calculations on Organic Molecules, Elsevier, Amsterdam, 1976; F.M. Bickelhaupt, N. J. R. van Eikema Hommes, C. Fonseca Guerra and E.J. Baerends. Organometallics, 1996, **15**, 2923-2931. (2) A. E. Reed, L. A. Curtiss, and F. Weinhold, *Chem. Rev.* 1988, **88**, 899-926; F. Weinhold and J. E. Carpenter, in, R. Naaman and Z. Vager (eds.), "The Structure of Small Molecules and Ions" (Plenum, New York, 1988), pp.227-236. J. M. Anglada and J. M. Bofill, *Theor. Chim. Acta.* 1995, **92**, 369-381. (3) R. F. W. Bader. Atoms in Molecules: A Quantum Theory; Clarendon Press, Oxford, 1990; R. Bader. Atoms in Molecules: A Quantum Theory, USA: Oxford University Press, 1994; R. Bader. *Chem. Rev.*, 1991, **91**, 893-928.

	Al	C_1	C ₂	C ₃
CC	0.196	-0.592	0.645	-0.249
	0.753	0.170	-0.461	-0.462
Α	1.194	-1.197	0.622	-0.619
C_1	0.405	-0.135	-0.134	-0.136
C_2 AI	0.771	-0.366	-0.366	-0.039
$^{2}{}^{3}{}^{3}{}^{G}$	1.092	0.091	-0.090	0.412
C ₁				
C ₂ —AI	0.489	-0.436	0.383	-0.436
	0.757	-0.055	-0.648	-0.055
C ₃ "	0.849	-0.164	-0.523	-0.164
Ή	0.501	0.415	0.554	0.440
	0.501	-0.645	0.554	-0.410
$C_1 - C_2 - C_3 - AI$	1.084	0.060	-0.370	-0.775
⁴ A	1.232	0.053	-0.323	-0.966
C_1	0.359	-0.112	-0.136	-0.112
$C_2 \rightarrow AI$	0.780	-0.345	-0.074	-0.360
⁴ G	1.349	0.111	-0.235	0.249
C_1	0.656	-0.541	0.426	-0.541
C ₂ AI	1.270	-0.412	-0.442	-0.416
C_3	1.567	-0.390	0.477	0.001
Ή				

Table 12. Charge Distribution of selected C₃Al isomers [Mulliken charge (given in normal print), NBO charge (given in bold print), and AIM charge (given in italics print) are shown in the table respectively].

^aMulliken charge distribution calculations for this structure have been reported previously at MP2/6-311G* and B3LYP/6-311G* levels of theory.⁶¹ These results are comparable to those listed in this Table.