Determining Relative Proton-Proton Proximities from the Build-up of Two-Dimensional Correlation Peaks in ¹H Double-Quantum MAS NMR: Insight from Multi-Spin Density-Matrix Simulations: <u>Supplementary Information</u>

Jonathan P. Bradley, Carmen Tripon, Claudiu Filip, and Steven P. Brown

S1 Representative SPINEVOLUTION files

Main input file

***** The System	* * * * * * * * * * * * * * * * *	* * *	* *				
<pre>spectrometer(MHz)</pre>	500						
<pre>spinning_freq(kHz)</pre>	12.5						
channels	H1						
nuclei	H1 H1 H1 H1 H1 H1 H1						
atomic_coords	dipeptide_8spin_h6.cor						
cs_isotropic	12.9 7.5 7.5 7.5 7.5 4.1 2.7 2.2 ppm						
csa_parameters	chasp.csa						
j_coupling	*						
quadrupole	*						
dip_switchboard	on_8.dsw on_8.dsw off_8.dsw on_8.dsw on_8.dsw						
csa_switchboard	*						
exchange_nuclei	(2 3 5)						
bond_len_nuclei	*						
bond_ang_nuclei	*						
tors_ang_nuclei	*						
groups_nuclei	*						
****** Pulse Seque	ence **********	* * *	* * * * * * * * * *	* * * * * *			
CHN 1							
timing(usec)	(lelement.seq)	0	(80)1024	(lelement.seq)	0.25		
power(kHz)	*	0	0	*	1000		
phase(deg)	*	0	0	*	270		
freq_offs(kHz)	*	0	0	*	0		
* * * * * * * * * * * * * * * * * * * *	*********VARIABL	ES*	* * * * * * * * * *	* * * * * * * * * *			
select_2 = rowmatr	ix("-2")						
******* Options etc	· * * * * * * * * * * * * * * * * * * *	* * *	* * * * * * * * * *	* * * * * * * * * *			
rho0	Flz						
observables	I6p						
EulerAngles	zcw34						
n_gamma	16						
line_broaden(Hz)	10						
zerofill	*						
FFT_dimensions	*						

dipeptide_8spin_h6.cor

6.26943	2.54043	16.62039	H1	(molecule	B)
3.74518	1.59953	16.10280	Н2	(molecule	A)
4.31689	0.72449	15.08679	HЗ	(molecule	A)
5.37310	5.42899	13.66821	HЗ	(molecule	C)
2.91184	1.00676	15.02928	H4	(molecule	A)
4.92252	2.84152	14.55003	Нб	(Observe)	
2.86824	2.06057	12.78639	H7	(molecule	A)
4.26844	1.39253	12.76722	Н8	(molecule	A)

chasp.csa

1	24.4	0.2	28	171	252
2	20.4	0.2	351	59	48
3	20.4	0.2	99	140	178
4	20.4	0.2	303	10	282
5	20.4	0.2	241	23	325
б	-8.0	0.9	243	83	277
7	-5.8	0.8	201	119	177
8	5.7	0.7	13	20	23

NB: Randomly chosen arbitrary orientations of the CSA tensors were considered in the simulations.

on.dsw

off.dsw

*							
0	*						
0	0	*					
0	0	0	*				
0	0	0	0	*			
0	0	0	0	0	*		
0	0	0	0	0	0	*	
0	0	0	0	0	0	0	*

1element.seq

2.857	87.5	51.43	0
11.429	87.5	231.43	0
8.571	87.5	51.43	0

S2 Simulated ¹H DQ build-up curves showing the effect of not including the ¹H CSAs

Fig. S2 Simulated ¹H DQ build-up curves of (a) the CH(Asp) – CH₂(a) peak at $\delta_{DQ} = 4.1 + 2.2 = 6.3$ ppm, (b) the CH(Asp) – OH peak at $\delta_{DQ} = 4.1 + 12.9 = 17.0$ ppm and (c) the NH – CH(Ala) peak at $\delta_{DQ} = 8.0 + 5.0 = 13.0$ ppm. The blue and red curves correspond to eight-spin SPINEVOLUTION simulations in which the CSA interactions are and are not considered, respectively. Lines linking the diamonds corresponding to simulated DQ peak intensities are included as guides for the eye. The DQ peak intensities are in arbitrary units.

S3 Simulated ¹H DQ build-up curves showing the effect of decreasing the minimum time interval

Fig. S3 Simulated ¹H DQ build-up curves of the CH(Asp) – OH peak at $\delta_{DQ} = 4.1 + 12.9 = 17.0$ ppm. The blue and red curves correspond to eight-spin SPINEVOLUTION simulations for an MAS frequency, $v_R = 125$ kHz, and *rf* nutation frequency, $v_1 = 875$ kHz setting the parameter dt_{max} (this is stated as the time interval used in the integration of the equation of motion) equal to 2 and 0.25 µs, respectively. Lines linking the diamonds corresponding to simulated DQ peak intensities are included as guides for the eye. The DQ peak intensities are in arbitrary units.

S4 Simulated ¹H DQ build-up curves showing the effect of increasing the number of powder averaging angles

Fig. S4 Simulated (SPINEVOLUTION) ¹H DQ build-up curves of the CH(Asp) – OH peak at $\delta_{DQ} = 4.1 + 12.9 = 17.0$ ppm for an eight-spin cluster. The blue curve shows the standard number (34 alpha and beta angles, 16 gamma angles) used in all other simulations, while the red and green curves show the effect of increasing the number of alpha and beta, and gamma angles, respectively. Lines linking the diamonds corresponding to simulated DQ peak intensities are included as guides for the eye. The DQ peak intensities are in arbitrary units.

S5 A comparison of the simulated ¹H DQ build-up curves (as in Figure 4 of main text)

Fig. S5 Simulated ¹H DQ build-up curves for eight-spin clusters centred on the (a) $CH_2(a)$, (b) $CH_2(b)$, (c) CH(asp), (d) CH(ala), (e) NH, (f) OH protons of the dipeptide β -AspAla.

S6 A comparison of the experimental ¹H DQ build-up curves (as in Figure 4 of main text)

CH(asp), (d) CH(ala), (e) NH, (f) OH protons of the dipeptide β -AspAla.

S7 Simulated and experimental ¹H DQ build-up curves (as in Figure 4 of main text) together with rows through the experimental ¹H DQ CRAMPS spectra

Fig. S7 A comparison of simulated (solid lines, diamonds, SPINEVOLUTION) and experimental (dashed lines, circles, 500 MHz, 12.5 kHz) ¹H DQ build-up curves for DQCs at the $CH_2(a)$ SQ frequency.

Fig. S8 A comparison of simulated (solid lines, diamonds, SPINEVOLUTION) and experimental (dashed lines, circles, 500 MHz, 12.5 kHz) ¹H DQ build-up curves for DQCs at the $CH_2(b)$ SQ frequency.

Fig. S9 A comparison of simulated (solid lines, diamonds, SPINEVOLUTION) and experimental (dashed lines, circles, 500 MHz, 12.5 kHz) ¹H DQ build-up curves for DQCs at the CH(Asp) SQ frequency.

Fig. S10 A comparison of simulated (solid lines, diamonds, SPINEVOLUTION) and experimental (dashed lines, circles, 500 MHz, 12.5 kHz) ¹H DQ build-up curves for DQCs at the CH(Ala) SQ frequency.

Fig. S11 A comparison of simulated (solid lines, diamonds, SPINEVOLUTION) and experimental (dashed lines, circles, 500 MHz, 12.5 kHz) ¹H DQ build-up curves for DQCs at the NH SQ frequency.

Fig. S12 A comparison of simulated (solid lines, diamonds, SPINEVOLUTION) and experimental (dashed lines, circles, 500 MHz, 12.5 kHz) ¹H DQ build-up curves for DQCs at the OH SQ frequency.