Electronic Supplementary Information

Natural Abundance ¹³C and ¹⁵N Solid-State NMR Analysis of Paramagnetic Transition-Metal Cyanide Systems

Pedro M. Aguiar[†], Michael Katz[‡], Daniel B. Leznoff[‡], Scott Kroeker^{†*}

⁺ Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada ⁺ Department of Chemistry, Simon Fraser University, Vancouver, British Columbia, Canada

Table S1 Selected Bond Lengths (Å) and Angles(°) for 8.^a

$Zn(1) - N(1^*)$	2.362(17)	$Zn(1) - N(3^*)$	2.135(9)
Zn(1) - N(3")	2.135(9)	Zn(1) - N(3')	2.135(9)
Zn(1) - N(1)	2.362(17)	Zn(1) - N(3)	2.135(9)
Au(1) - Au(2\$)	3.2201(6)	Au(1) - Au(2)	3.2201(6)

$N(1^*) - Zn(1) - N(3^*)$	89.5(4)	$N(1^*) - Zn(1) - N(3'')$	89.5(4)
$N(3^*) - Zn(1) - N(3^{"})$	97.7(5)	$N(1^*) - Zn(1) - N(3')$	90.5(4)
$N(3^*) - Zn(1) - N(3^{\prime})$	82.3(5)	N(3'') - Zn(1) - N(3')	180
$N(1^*) - Zn(1) - N(1)$	180	$N(3^*) - Zn(1) - N(1)$	90.5(4)
N(3") - Zn(1) - N(1)	90.5(4)	N(3') - Zn(1) - N(1)	89.5(4)
$N(1^*) - Zn(1) - N(3)$	90.5(4)	$N(3^*) - Zn(1) - N(3)$	179.995
N(3") - Zn(1) - N(3)	82.3(5)	N(3') - Zn(1) - N(3)	97.7(5)
N(1) - Zn(1) - N(3)	89.5(4)	Zn(1) - N(1) - C(1)	150.4(14)
Zn(1) - N(3) - C(3)	106.4(8)		

^aSymmetry transformations : *: 1-x, -y, 3-z; ": 1-x, y, 3-z; ': x, -y, z; \$: x , y, 1+z

Figure S1: The temperature dependence of the two ¹³C cyanide signals for compound **1**.

Figure S2: Structure of compound 3 along with selected nitrogen to copper distances.

Table S2: Results of ¹³ C variable-ter	mperature experiments.
---	------------------------

Sample				
Site	δ_{diam}	Slope	$^{13}C \rho_{\alpha\beta}$	R ²
	(ppm)	(ppm/1000 K)	(a.u.)	
[Cu(en) ₂][Hg(CN) ₂ Cl] ₂				
CN1	147 ± 2	-3.1273	-0.000089	0.958
CN2	149 ± 2	1.0905	0.000031	0.935
en (-CH ₂ -)	n.d.			
$[Cu(en)_2][Ag_2(CN)_3][Ag(CN)_2]$				
CN21	153 ± 2	-2.28749	-0.000065	0.937
CN21 ^a	153 ± 2	-2.28749	-0.000065	0.937
CN11		0		
CN11 ^a		0		
CN20		0		
en (-CH ₂ -)	43 ± 13	-108.68957	-0.003083	0.993
[Cu(en) ₂][Au(CN) ₂] ₂				
CN1	152 ± 2	-8.1537	-0.000231	0.963
CN2	152 ± 2	5.7818	0.000164	0.954
en (-CH2-)	-40 ± 30	-81.009	-0.002298	0.891

Figure S3: Spin-spin relaxation data for sample $[Cu(en)_2[Zn(NC)_4(CuCN)_2]$. The intensities for the signals at 182 (red circles) and 165 ppm (green squares) signals decay much more slowly than the 122 ppm signal (blue diamonds).

Figure S4: ¹³C MAS of $[Cu(en)_2[Zn(NC)_4(CuCN)_2]$ showing the splitting of the low-frequency peak upon changing the temperature.

Figure S5: Simulated (a) and experimental (b) spectra for compound 7 acquired at 10 kHz spinning.

Figure S6: Simulation (a) and experimental (b) spectra for compound 8 acquired at 6 kHz spinning.