1 Single-crystal orientations

Table 1: Orientation of the single crystals with respect to the laboratory frame. The directional cosines of the crystal axes a, b, c are given with respect to the laboratory frame X, Y, Z for a crystal rotation denoted with 0° in the spectra. The magnetic field B_0 is parallel to the X-axis, and the rotation of the single crystal corresponds to a rotation of the B_0 -vector around the Z-axis. The subscripts W and Q indicate the single crystal used in W- and Q-band, respectively.

	a_W	\mathbf{b}_W	c_W	a_Q	\mathbf{b}_Q	c_Q
X	0.4397	-0.1802	0.8799	-0.1294	0.0089	-0.9916
Y	-0.8944	-0.1769	0.4107	0.9780	0.1664	-0.1261
Z	0.0816	-0.9676	-0.2389	0.1639	-0.9860	-0.0302

2 High-field EPR and ENDOR on Y_D^{\bullet}

Figure 1: Pseudo-modulated FSE single crystal spectra of the Y_D^{\bullet} measured at W-band. The effective g-values for the eight crystal sites are shown in green. The red circles denote the field positions at which ¹H-ENDOR spectra were taken. The field positions chosen follow the effective g-value orientation dependency. For some crystal orientations (e.g. 0°) four field positions were chosen to cover all crystal sites. At other crystal orientations (e.g. 40°) only two field positions are needed. All spectra were measured at T = 40 K with a π -pulse length of 128 ns, the shot repetition time was 2000 μ s.

Figure 2: ¹H-ENDOR single-crystal spectra of the Y_D^{\bullet} for the crystal orientations 0°-40°. Experimental spectra are shown in black, simulations in red. The four columns correspond to the field positions at which ENDOR-spectra were taken. The field positions are marked as red circles in Figure 1 and the spectra correspond to the field positions marked from left to right. Depending on the effective *g*-values of different crystal sites two up to four field positions were chosen for taking ENDOR spectra. All spectra were measured at T = 40 K, the π -pulse had a length of 128 ns, the RF-pulse a length of 16 μ s, the shot repetition time was 8000 μ s.

Figure 3: ¹H-ENDOR single-crystal spectra of the Y_D^{\bullet} for the crystal orientations 50°–90°. For details see Figure 2

Figure 4: ¹H-ENDOR single-crystal spectra of the Y_D^{\bullet} for the crystal orientations 100°–140°. For details see Figure 2

Figure 5: ¹H-ENDOR single-crystal spectra of the Y_D^{\bullet} for the crystal orientations 150°–180°. For details see Figure 2

3 Q-band EPR and ENDOR on the S_2 MLS

Figure 6: Pseudo-modulated FSE single-crystal spectra of the Y_D^{\bullet} measured at Q-band are shown in black, simulations in red. The orientation dependence of the effective *g*-values for Y_D^{\bullet} at the eight crystal sites is shown in black. All spectra were measured at T = 5 K with a π -pulse length of 40 ns and a shot repetition time of 140 ms.