Supporting Information for

Highly active ceria-supported gold clusters for 1,3-butadiene hydrogenation

Yejun Guan and Emiel J. M. Hensen

Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands e.j.m.hensen@tue.nl

Supporting Information Table of Contents

Extended version of Table 1	Page S2
EXAFS analysis	Page S3

Results

Sample	Treatment	14	£ [a]	EXAFS analysis ^[b]							TOF ^[d]
		e Treatment	mple Treatment r (mmol/g _{Au} .s)	(%)	Shell	<i>R</i> (Å)	CN	$\Delta\sigma^2$ (Å ²)	$E_0 (\mathrm{eV})$	F (%)	D (%) ^[c]
Au foil	-	-	0	Au Au	2.87 4.06	12 4	0.009 0.012	-7.2	22	-	
Au/CeO ₂	He, 393 K	0.31	55	O Au	1.96 2.84	0.4 7.8	0.001 0.013	-7.3	41	37	0.17
	H ₂ , 393 K	0.35	7				n.d. ^[e]		n.d.	37 ^[f]	0.19
	H ₂ , 423 K	0.40	0				n.d.		n.d.	37 ^[f]	0.21
	H ₂ , 473 K	0.70	0				n.d.		n.d.	37 ^[f]	0.37
	H ₂ , 523 K	3.3	0	Au	2.81	7.1	0.010	-5.8	36	45	1.5
	H ₂ , 623 K	1.1	0	Au	2.82	7.0	0.009	-7.2	37	47	0.47
	H ₂ , 773 K	0.22	0	Au	2.83	7.0	0.011	-7.4	40	47	0.09
Au/CeO ₂ -CN	He, 393 K	2.7 (12) ^[g]	100	O Ce	1.97 3.23	3.1 4.2	0.003 0.013	-8.2	36	100	0.4 (0.7) ^[g]
	H ₂ , 393 K	14	72				n.d.		n.d.	100	2.7
	H ₂ , 423 K	42	40				n.d.		n.d.	100 ^[f]	8.2
	H ₂ , 473 K	91	20				n.d.		n.d.	100 ^[f]	18
	H ₂ , 523 K	94	18	O Au	2.01 2.73	0.4 3.7	0.001 0.013	-3.1	46	100 ^[f]	19
	H ₂ , 623 K	94	17				n.d.		n.d.	100 ^[f]	19
	H ₂ , 773 K	5.3	8	O Au	2.11 2.78	0.2 5.9	0.001 0.013	-5.6	36	65	1.6

Table S1. Catalytic performance in 1,3-butadiene hydrogenation, structural parameters from fitted EXAFS spectra and estimate of the fraction of cationic gold from XANES for Au/CeO₂ and Au/CeO₂-CN as a function of the gas treatment and for a Au foil.

[a] estimated fraction of Au³⁺ from fitting of whiteline of near-edge spectra [b] fitting of k^3 -weighted EXAFS spectra; $\Delta k=2.8-11.0$ Å⁻¹ for Au/CeO₂; $\Delta k=2.8-10.3$ Å⁻¹ for Au/CeO₂-CN; estimated error in $R \pm 0.02$ Å, $N \pm 20\%$, $\Delta \sigma^2 \pm 10\%$; F is the normalized residual [c] dispersion from Au-Au coordination number according to Ref. 22 [d] turnover frequency computed from D [e] not determined [f] assumed equal to dispersion of previous treatment [g] after 12 h time on stream.

EXAFS analysis - EXAFS functions of the k^3 -weighted data and corresponding fits are given below for Au/CeO₂ and Au/CeO₂-CN pre-treated under varying conditions.

Figure S1. Experimental k^3 -weighted EXAFS function (solid line) and fit (dashed line) for Au/CeO₂ dried at 393K.

Figure S2. Experimental k^3 -weighted EXAFS function (solid line) and fit (dashed line) for Au/CeO₂ reduced at 523 K.

Figure S3. Experimental k^3 -weighted EXAFS function (solid line) and fit (dashed line) for Au/CeO₂ reduced at 623 K.

Figure S4. Experimental k^3 -weighted EXAFS function (solid line) and fit (dashed line) for Au/CeO₂ reduced at 773 K.

Figure S5. Experimental k^3 -weighted EXAFS function (solid line) and fit (dashed line) for Au/CeO₂-CN dried at 393K.

Figure S6. Experimental k^3 -weighted EXAFS function (solid line) and fit (dashed line) for Au/CeO₂-CN reduced at 523K.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009

Figure S7. Experimental k^3 -weighted EXAFS function (solid line) and fit (dashed line) for Au/CeO₂-CN reduced at 773K.