Supplementary Material to

Photoinduced hole transfer in semiconducting polymer / lowbandgap cyanine dye blends: evidence for unit charge separation quantum yield

Fernando A. Castro^{1*}, Hadjar Benmansour^{1†}, Jacques-Edouard Moser², Carlos F. O. Graeff³, Frank Nüesch¹, Roland Hany¹

¹Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Functional Polymers, Überlandstr. 129, CH-8600 Dübendorf, Switzerland

² Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering, EPFL, Ecole

Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

³ Departamento de Física – FC – UNESP, Av. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru – SP, Brazil

*Corresponding author: Fernando A. Castro Empa Überlandstr. 129, CH-8600 Dübendorf, Switzerland Phone: +41 44 823-4786, fax: +41 44 823-4012, e-mail: <u>fernando.araujo@empa.ch</u>

[†] Present address: CEA-DRFMC-SPrAM, Laboratoire d'Electronique Moléculaire Organique et Hybride, Grenoble, France.

Fig. S1 Simulation of fluorescence spectra from CyA dye in polystyrene, taking only re-absorption in account. We used the following equation: $F'(\lambda) = F(\lambda)[10^{-\varepsilon(\lambda)cl}]$, where $F'(\lambda)$ is the fluorescence spectrum distorted by reabsorption, $F(\lambda)$ is the undistorted spectrum (we used the one from PS:CyA blend with 0.1 wt% of dye) and the term $\varepsilon(\lambda)cl$ accounts for re-absorption. This equation does not reproduce the experimental spectra for blends with dye concentrations higher than 3 wt%.

Fig. S2 Spectral overlap between MEH-PPV emission normalized by the area and dye absorption (left) and intensity of the peak of MEH-PPV emission (right) as a function of dye CyA concentration in the blend.^a

[a] A. Gilbert and J. Baggot, Essentials of Molecular Photochemistry, first edition, Blackwell, 1991.

Fig. S3 Comparison between normalized fluorescence spectra of MEH-PPV : CyA and polystyrene (PS) : CyA blends for four different dye concentrations. Below 3 wt%, spectra are essentially the same. At higher concentrations, however, electronic-vibration coupling is higher when the dye is in the MEH-PPV matrix.