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Higher integrals in the R=0 case

In cases where R = 0, the Gaussian product is concentric with φk(r) and the
resulting unnormalized auxiliary integrals are

(µν|φnlm) =
∫

xaybzc exp(−γ2r2)φnlm(r) dr (1)

As in (4.31), Parseval’s Theorem allows this to be recast as

(µν|φnlm) = 4(π/γ2)3/2ylm(a, b, c)F̂ a+b+c
nl (γ) (2)

where

ylm(a, b, c) =
∫ π

0

∫ 2π

0

sin1+a+b θ cosc θ cosa ϕ sinb ϕ Ylm(θ, ϕ) dϕdθ (3)

is the angular part and F̂ l′

nl(γ), the binomial transform of F l′

kl(γ), is the radial
part of the integration.

As shown in Table 1, the F l′

kl(γ) are linear combinations of

f i
k(γ) ≡ (4γ)k+1

8π

(
− 1

2γ

)i ∂iH−(k+1)(γ)
∂γi

=
(4γ)k+1

8π

(
1
γ

)i

(k+1)iH−(k+i+1)(γ)

(4)
where l ≤ i ≤ l′ = a + b + c and (k + 1)i = (k + 1)(k + 2)...(k + i).

Because of the high symmetry of the system, most of the integrals (1) vanish.
The exceptions are those in which the Gaussian product and the RO potential
span the same irreducible representations of the spherical group. As a result,
as mentioned in the main text, L is saturated at 2L, leaving only N to be
improved.
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Table 1: FL
kl as linear combinations of f i

k

L l = 0 l = 1 l = 2 l = 3 l = 4
0 (ss) f0

k

1 (sp) f1
k

2 (pp, sd) 3
2γ2 f0

k − f2
k f2

k

3 (pd) 5
2γ2 f1

k − f3
k f3

k

4 (dd) 15
(2γ2)2 f0

k − 10
2γ2 f2

k + f4
k

7
2γ2 f2

k − f4
k f4

k
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