Supplementary Materials for

Novel Antimonate Photocatalysts $\mathbf{M S b}_{2} \mathbf{O}_{\mathbf{6}}(\mathbf{M}=\mathbf{C a}, \mathbf{S r}$ and $\mathbf{B a})$: \mathbf{A} Correlation between Packing Factor and Photocatalytic Activity

Xinping Lin, Jianjun Wu, Xujie Lü, Zhichao Shan, Wendeng Wang and Fuqiang Huang* CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai 200050, P. R. China (P.R.C).

1. Literature on Photocatalytic Compounds

A literature survey of the photocatalytic activity and structure factor is summarized in Table S1 and Table S3. Packing factor (PF) was computed using the crystallographic data of unit cell volumes and coordination numbers reported in the literature (i.e., the papers that reported photocatalysis or other papers/handbook/database on structures). The value of band gap (E_{g}) was taken from the same report(s) on photocatalytic activity. Where applicable, additive used $\left(\mathrm{RuO}_{2}\right.$, Pt or NiO) is specified.

2. Additional materials

Additional materials besides $\mathrm{MSb}_{2} \mathrm{O}_{6}(\mathrm{M}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ for photocatalytic evaluation in our experiments were synthesized by solid state reaction or precipitation using high purity (Sinoreg., 99.5\%) starting materials unless noted otherwise. (See descriptions on individual materials below.) The calcination temperature and time were chosen to yield comparable BET surface areas for powders of different
compounds in the same series. Phase identification was performed by X-ray powder diffraction (XRD) and only single phase powders were used. The optical band gaps were estimated from the UV-Vis diffuse reflection spectra.
(1) TiO_{2} : Commercial anatase TiO_{2} was heat-treated at $500{ }^{\circ} \mathrm{C}$ and $950{ }^{\circ} \mathrm{C}$, respectively, to acquire anatase and rutile phases with similar surface area.
(2) BiNbO_{4} : Two polymorphs (orthorhombic and triclinic) were prepared by solid state reactions between $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ at $900{ }^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$ (orthorhombic) and $1250^{\circ} \mathrm{C}$ (triclinic).
(3) $M \mathrm{TiO}_{3}(M=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}$ and Ba$)$: These compounds were synthesized by precipitation of metal (M) salt on TiO_{2} particles. A stoichiometric amount of TiO_{2} (Degussa P25) was suspended in 200 mL of $M\left(\mathrm{NO}_{3}\right)_{2}$ aqueous solution with $\left[M^{2+}\right]=$ $0.5 \mathrm{~mol} / \mathrm{L}$ and 1 mL PEG (molecular weight: 200) was added. Next, 55 mL of aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with $\left[\mathrm{CO}_{3}{ }^{2-}\right]=2 \mathrm{~mol} / \mathrm{L}$ was added dropwise into the suspension under vigorous stirring. The precipitates were repeatedly filtered and washed in water, then calcined at $850^{\circ} \mathrm{C}$ to $1050^{\circ} \mathrm{C}$ for 6 h .
(4) $(\mathrm{BaO})\left(\mathrm{TiO}_{2}\right)_{n}(n=1,2$ and 4$)$: These compounds were prepared by solid state reactions between BaCO_{3} and TiO_{2} at $1250^{\circ} \mathrm{C}$ for 12 h to 18 h .
(5) $(\mathrm{CaO})\left(\mathrm{TiO}_{2}\right)_{n}(n=1,2$ and 4): These compounds were prepared by solid state reactions between CaCO_{3} and TiO_{2} at $1400^{\circ} \mathrm{C}$ for 12 h .
(6) $M \mathrm{Nb}_{2} \mathrm{O}_{6}(M=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}$ and Ba$)$: These compounds were synthesized by solid state reactions between $M \mathrm{CO}_{3}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ at $1450^{\circ} \mathrm{C}$ for 12 h .

1 (7) $M \mathrm{Sb}_{2} \mathrm{O}_{6}(M=\mathrm{Ca}, \mathrm{Sr}$ and Ba$)$: These compounds were synthesized by solid state 2 reactions between $M\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3}$ at $1150^{\circ} \mathrm{C}$ for 24 h .

3 (8) $M \mathrm{WO}_{4}(M=\mathrm{Ca}, \mathrm{Sr}$ and Ba$)$: These compounds were synthesized by solid state 4 reactions between MCO_{3} and WO_{3} at $850^{\circ} \mathrm{C}$ to $950^{\circ} \mathrm{C}$.

5 (9) $\mathrm{MBiO}_{2} \mathrm{Cl}(M=\mathrm{Ca}, \mathrm{Sr}$ and Ba$)$: These compounds were prepared by solid state prepared by solid state reactions between SrCO_{3} and $\mathrm{Bi}_{2} \mathrm{O}_{3}$ at $650^{\circ} \mathrm{C}$ to $780^{\circ} \mathrm{C}$ for 12 h 9 to 28 h .

Table S1 Photocatalytic compounds from the literature, grouped to illustrate the perfect correlation between photocatalytic activity and packing factor (PF).

Catalyst	$E_{\mathrm{g}}(\mathrm{eV})$	Crystal system	Space group	PF (\%)	Measurement	Activity	Ref.
$\begin{aligned} & \mathrm{NaTaO}_{3} \\ & \mathrm{KTaO}_{3} \end{aligned}$	$\begin{aligned} & 3.96 \\ & 3.42 \end{aligned}$	Orthorhombic Cubic	Pm3m	$\begin{aligned} & 80.46 \\ & 85.03 \end{aligned}$	UV, water splitting	$\mathrm{Na}>\mathrm{K}$	S1
LiTaO_{3} NaTaO_{3} KTaO_{3}	$\begin{aligned} & 4.7 \\ & 4.0 \\ & 3.6 \end{aligned}$	Rhombohedral Orthorhombic Cubic	$\begin{aligned} & \mathrm{R} 3 \mathrm{c} \\ & - \\ & \mathrm{Pm}-3 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 68.99 \\ & 80.46 \\ & 85.03 \end{aligned}$	UV, water splitting	$\mathrm{Li}>\mathrm{Na}>\mathrm{K}$	$\begin{aligned} & \mathrm{S} 2-\mathrm{S} \\ & 4 \end{aligned}$
$\begin{aligned} & \mathrm{CaTa}_{2} \mathrm{O}_{6} \\ & \mathrm{SrTa}_{2} \mathrm{O}_{6} \\ & \mathrm{BaTa}_{2} \mathrm{O}_{6} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.4 \\ & 4.1 \end{aligned}$	Orthorhombic Orthorhombic Orthorhombic	Pnma Pbam Pnma	$\begin{aligned} & 63.11 \\ & 62.13 \\ & 62.42 \end{aligned}$	UV, water splitting	$\begin{aligned} & \mathrm{Sr}>\mathrm{Ba}> \\ & \mathrm{Ca} \end{aligned}$	S2,S5
$\begin{aligned} & \mathrm{MgTa}_{2} \mathrm{O}_{6} \\ & \mathrm{BaTa}_{2} \mathrm{O}_{6} \end{aligned}$	-	Tetragonal Orthorhombic	$\mathrm{P} 4_{2} / \mathrm{mnm}$ Pnma	$\begin{aligned} & 65.35 \\ & 62.42 \end{aligned}$	UV, water splitting	$\mathrm{Ba}>\mathrm{Mg}$	S4
KTaO_{3}	3.9	Cubic	Pm3m	85.03	UV, water	$\mathrm{K}_{2}>\mathrm{K}$	S6

$\mathrm{K}_{2} \mathrm{Ta}_{2} \mathrm{O}_{6}$	4.5	Cubic	Fd3m	67.87	splitting		
$\begin{aligned} & \mathrm{Pt} / \mathrm{CaTaO}_{2} \mathrm{~N} \\ & \mathrm{Pt} / \mathrm{SrTaO}_{2} \mathrm{~N} \\ & \mathrm{Pt} / \mathrm{BaTaO}_{2} \mathrm{~N} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.1 \\ & 2.0 \end{aligned}$	Orthorhombic Cubic Cubic	Pnma	$\begin{aligned} & 76.71 \\ & 75.61 \\ & 78.27 \end{aligned}$	Vis, water splitting	$\begin{aligned} & \mathrm{Sr}>\mathrm{Ca} \approx \\ & \mathrm{Ba} \end{aligned}$	S7
NaNbO_{3} KNbO_{3}	$\begin{aligned} & 3.08 \\ & 3.14 \end{aligned}$	Orthorhombic Orthorhombic	Pbma Cm2m	$\begin{aligned} & 78.60 \\ & 83.38 \end{aligned}$	UV, water splitting	$\mathrm{Na}>\mathrm{K}$	S1
$\begin{aligned} & \mathrm{Pt} / \mathrm{NiNb}_{2} \mathrm{O}_{6} \\ & \mathrm{Pt} / \mathrm{NiTa}_{2} \mathrm{O}_{6} \end{aligned}$	$\begin{aligned} & 2.20 \\ & 2.30 \end{aligned}$	Orthorhombic Tetragonal	Pben P42/mnm	$\begin{aligned} & 66.49 \\ & 65.45 \end{aligned}$	UV, water splitting	$\mathrm{Ta}>\mathrm{Nb}$	S8
$\begin{aligned} & \mathrm{Pt} / \mathrm{AgNbO}_{3} \\ & \mathrm{Pt} / \mathrm{AgTaO}_{3} \end{aligned}$	$\begin{aligned} & 2.80 \\ & 3.40 \end{aligned}$	Orthorhombic Monoclinic		$\begin{aligned} & 67.42 \\ & 67.88 \end{aligned}$	$\mathrm{UV}, \quad \mathrm{O}_{2}$ evolution	$\mathrm{Nb}>\mathrm{Ta}$	S9
$\begin{aligned} & \mathrm{NiO} / \mathrm{Sr}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7} \\ & \mathrm{NiO} / \mathrm{Sr}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7} \end{aligned}$	$\begin{aligned} & 3.90 \\ & 4.60 \end{aligned}$	Orthorhombic Orthorhombic	Cmcm Cmcm	$\begin{aligned} & 56.13 \\ & 55.07 \end{aligned}$	UV, water splitting	$\mathrm{Ta}>\mathrm{Nb}$	S10
$\begin{aligned} & \mathrm{Pt} / \mathrm{BiNbO}_{4} \\ & \mathrm{Pt} / \mathrm{BiTaO}_{4} \end{aligned}$	$\begin{aligned} & 2.64 \\ & 2.74 \end{aligned}$	Orthorhombic Triclinic	Pnna P1	$\begin{aligned} & 57.60 \\ & 58.93 \end{aligned}$	UV, water splitting	$\mathrm{Nb}>\mathrm{Ta}$	S11
$\begin{aligned} & \mathrm{Pt} / \mathrm{InVO}_{4} \\ & \mathrm{Pt} / \mathrm{InNbO}_{4} \\ & \mathrm{Pt} / \mathrm{InTaO}_{4} \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.50 \\ & 2.60 \end{aligned}$	Orthorhombic Monoclinic Monoclinic	Cmcm P2/c P2/c	$\begin{aligned} & 53.57 \\ & 63.36 \\ & 63.72 \end{aligned}$	UV-Vis, water splitting	$\begin{aligned} & \mathrm{V}>\mathrm{Nb}> \\ & \mathrm{Ta} \end{aligned}$	S12
$\begin{aligned} & \mathrm{Pt} / \mathrm{BaZn}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \\ & \mathrm{Pt} / \mathrm{BaZn}_{1 / 3} \mathrm{Ta}_{2 / 3} \mathrm{O}_{3} \\ & \mathrm{Pt} / \mathrm{BaNi}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \\ & \mathrm{Pt} / \mathrm{BaNi}_{1 / 3} \mathrm{Ta}_{2 / 3} \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & 3.82 \\ & 4.50 \\ & 3.35 \\ & 3.89 \end{aligned}$	Cubic Hexagonal Cubic Hexagonal	Pm-3m P-3m Pm-3m P-3m	$\begin{aligned} & 74.09 \\ & 74.20 \\ & 74.32 \\ & 74.46 \end{aligned}$	UV, water splitting	$\begin{array}{lll} \mathrm{ZnNb} & > \\ \mathrm{ZnTa} & > \\ \mathrm{NiNb} & > \\ \mathrm{NiTa} & \end{array}$	S13
$\begin{aligned} & \mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8} \\ & \mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8} \\ & \mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8} \end{aligned}$	$\begin{aligned} & 2.92 \\ & 3.02 \\ & 2.25 \end{aligned}$	Tetragonal Tetragonal Tetragonal	Abam Abam Abam	$\begin{aligned} & 68.98 \\ & 69.56 \\ & 71.69 \end{aligned}$	Vis, $\quad \mathrm{O}_{2}$ evolution	$\begin{aligned} & \mathrm{Zn}>\mathrm{Mg}> \\ & \mathrm{Ni} \end{aligned}$	S14
$\begin{aligned} & \mathrm{Mg}_{2.5} \mathrm{VMoO}_{8} \\ & \mathrm{Zn}_{2.5} \mathrm{VMoO}_{8} \end{aligned}$	-	Orthorhombic Orthorhombic	Pnma $\mathrm{P} 2_{1} 2_{1} 2_{1}$	$\begin{aligned} & 61.33 \\ & 60.41 \end{aligned}$	Vis, $\quad \mathrm{O}_{2}$ evolution	$\mathrm{Zn}>\mathrm{Mg}$	S15
$\begin{aligned} & \mathrm{Ga}_{2} \mathrm{BiNbO}_{7} \\ & \mathrm{In}_{2} \mathrm{BiNbO}_{7} \end{aligned}$	$\begin{aligned} & 2.57 \\ & 2.52 \end{aligned}$	Cubic Cubic	$\begin{aligned} & \text { Fd-3m } \\ & \text { Fd-3m } \end{aligned}$	$\begin{aligned} & 55.31 \\ & 56.69 \end{aligned}$	UV, water splitting;	$\mathrm{Ga}>\mathrm{In} ;$	S16

Electronic Supplementary Material for PCCP
This Journal is © The Owner Societies 2009

					Vis, MB degradation	$\mathrm{Ga}>\mathrm{In}$	
$\mathrm{Bi}_{2} \mathrm{YTaO}_{7}$ $\mathrm{Bi}_{2} \mathrm{LaTaO}_{7}$	$\begin{aligned} & 2.23 \\ & 2.17 \end{aligned}$	Cubic Cubic	$\begin{aligned} & \mathrm{Fd}-3 \mathrm{~m} \\ & \mathrm{Fd}-3 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 54.37 \\ & 52.76 \end{aligned}$	UV, water splitting; Vis, MB degradation	$\begin{aligned} & \mathrm{La}>\mathrm{Y} ; \\ & \mathrm{La}>\mathrm{Y} \end{aligned}$	S17
$\begin{aligned} & \mathrm{Sr}\left(\mathrm{In}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3} \\ & \mathrm{Ba}\left(\mathrm{In}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & 3.62 \\ & 3.30 \end{aligned}$	Cubic Cubic	$\begin{aligned} & \operatorname{Pm} 3 m \\ & \operatorname{Pm} 3 m \end{aligned}$	$\begin{array}{\|l\|} 72.83 \\ 75.24 \end{array}$	UV-Vis, MB degradation	$\mathrm{Sr}>\mathrm{Ba}$	S18
$\begin{aligned} & \mathrm{Sr}\left(\left[\mathrm{In}_{13} \mathrm{Nb}_{1 / 3} \mathrm{SN}_{1 / 3}\right) \mathrm{O}_{3}\right. \\ & \mathrm{Baa}\left(\mathrm{I}_{1 / 3} \mathrm{Nb}_{1 / 3} \mathrm{Sn}_{13} \mathrm{O}_{3}\right. \end{aligned}$	$\begin{aligned} & 3.48 \\ & 3.00 \end{aligned}$	Cubic Cubic	$\begin{aligned} & \operatorname{Pm} 3 m \\ & \operatorname{Pm} 3 m \end{aligned}$	$\begin{array}{\|l} 72.84 \\ 75.49 \end{array}$	UV-Vis, MB degradation	$\mathrm{Sr}>\mathrm{Ba}$	S18
$\mathrm{Ba}\left(\left[\mathrm{I}_{13} \mathrm{~Pb}_{1 / 3} \mathrm{Nb}_{13}\right) \mathrm{O}_{3}\right.$ $\mathrm{Ba}\left(\mathrm{In}_{13} \mathrm{~Pb}_{1 / 3} \mathrm{Ta}_{1 / 3} \mathrm{O}_{3}\right.$	$\begin{aligned} & 1.48 \\ & 1.50 \end{aligned}$	Cubic Cubic	$\begin{aligned} & \text { Pm3m } \\ & \text { Pm3m } \end{aligned}$	$\begin{aligned} & 75.51 \\ & 76.71 \end{aligned}$	UV-Vis, MB degradation	$\mathrm{In}>\mathrm{Ta}$	S19
$\begin{aligned} & \mathrm{CaIn}_{2} \mathrm{O}_{4} \\ & \mathrm{SrIn}_{2} \mathrm{O}_{4} \\ & \mathrm{BaIn}_{2} \mathrm{O}_{4} \end{aligned}$		Orthorhombic Orthorhombic Monoclinic	Pnam Pnam $\mathrm{P} 2_{1} / \mathrm{a}$	$\begin{aligned} & 59.98 \\ & 61.36 \\ & 62.90 \end{aligned}$	Vis, MB degradation	$\begin{aligned} & \mathrm{Ca}>\mathrm{Sr}> \\ & \mathrm{Ba} \end{aligned}$	S20
$\begin{aligned} & \mathrm{RuO}_{2} / \mathrm{CaIn}_{2} \mathrm{O}_{4} \\ & \mathrm{RuO}_{2} / \mathrm{SrIn}_{2} \mathrm{O}_{4} \\ & \mathrm{RuO}_{2} / \mathrm{BaIn}_{2} \mathrm{O}_{4} \end{aligned}$		Orthorhombic Orthorhombic Monoclinic	Pnam Pnam P2 ${ }_{1} / \mathrm{a}$	$\begin{aligned} & 59.98 \\ & 61.36 \\ & 62.90 \end{aligned}$	UV-Vis, water splitting	$\begin{aligned} & \mathrm{Ca}>\mathrm{Sr}> \\ & \mathrm{Ba} \end{aligned}$	S21
$\begin{aligned} & \mathrm{RuO}_{2} / \mathrm{LiInO}_{2} \\ & \mathrm{RuO}_{2} / \mathrm{NaInO}_{2} \end{aligned}$		Tetragonal Trigonal	$\begin{aligned} & \mathrm{I} 4_{1} / \mathrm{amd} \\ & \mathrm{R}-3 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l\|} 64.39 \\ 59.81 \end{array}$	UV-Vis, water splitting	$\mathrm{Na}>\mathrm{Li}$	S22
$\mathrm{Pt} /$ Anatase $-\mathrm{TiO}_{2}$ $\mathrm{Pt} /$ Rutile- TiO_{2}	$\begin{aligned} & 3.20 \\ & 3.00 \end{aligned}$	Tetragonal Tetragonal		$\begin{aligned} & 64.55 \\ & 70.45 \end{aligned}$	UV, water splitting	Anatase > Rutile	S23
$\begin{aligned} & \mathrm{Li}_{2} \mathrm{TiO}_{3} \\ & \mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7} \\ & \mathrm{~K}_{2} \mathrm{Ti}_{8} \mathrm{O}_{17} \end{aligned}$		Monoclinic Monoclinic Monoclinic	$\begin{aligned} & \mathrm{C} 2 / \mathrm{c} \\ & \mathrm{P} 2_{1} / \mathrm{m} \\ & \mathrm{C} 2 / \mathrm{m} \end{aligned}$	$\begin{aligned} & 70.76 \\ & 63.05 \\ & 63.85 \end{aligned}$	UV, MB degradation	$\mathrm{Na}>\mathrm{K}>\mathrm{Li}$	S24
$\begin{aligned} & \mathrm{RuO}_{\mathrm{x}} / \mathrm{Na}_{2} \mathrm{Ti}_{6} \mathrm{O}_{13} \\ & \mathrm{RuO}_{\mathrm{x}} / \mathrm{K}_{2} \mathrm{Ti}_{6} \mathrm{O}_{13} \\ & \mathrm{RuO}_{\mathrm{x}} / \mathrm{Rb}_{2} \mathrm{Ti}_{6} \mathrm{O}_{13} \end{aligned}$	$\begin{aligned} & 3.36 \\ & 3.26 \\ & 3.13 \end{aligned}$	Monoclinic Monoclinic Monoclinic	$\begin{aligned} & \mathrm{C} 2 / \mathrm{m} \\ & \mathrm{C} 2 / \mathrm{m} \\ & \mathrm{C} 2 / \mathrm{m} \end{aligned}$	$\begin{aligned} & 61.65 \\ & 63.84 \\ & 65.36 \end{aligned}$	UV, water splitting	$\begin{aligned} & \mathrm{Na}>\mathrm{K}> \\ & \mathrm{Rb} \end{aligned}$	S25
$\mathrm{RuO}_{x} / \mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$	3.51	Monoclinic	$\mathrm{P} 2_{1} / \mathrm{m}$	63.05	UV, water	$\mathrm{Ti}_{6}>\mathrm{Ti}_{3}$	S25

Electronic Supplementary Material for PCCP
This Journal is © The Owner Societies 2009

$\mathrm{RuO}_{\mathrm{x}} / \mathrm{Na}_{2} \mathrm{Ti}_{6} \mathrm{O}_{13}$	3.36	Monoclinic	C2/m	61.65	splitting		
$\begin{aligned} & \mathrm{RuO}_{\mathrm{x}} / \mathrm{K}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5} \\ & \mathrm{RuO}_{\mathrm{x}} / \mathrm{K}_{2} \mathrm{Ti}_{4} \mathrm{O}_{9} \\ & \mathrm{RuO}_{\mathrm{x}} / \mathrm{K}_{2} \mathrm{Ti}_{6} \mathrm{O}_{13} \end{aligned}$	$\begin{aligned} & 3.46 \\ & 3.26 \end{aligned}$	Monoclinic Monoclinic Monoclinic	$\begin{aligned} & \mathrm{C} 2 / \mathrm{m} \\ & \mathrm{C} 2 / \mathrm{m} \end{aligned}$	$\begin{aligned} & 70.51 \\ & 68.21 \\ & 63.84 \end{aligned}$	UV, water splitting	$\begin{aligned} & \mathrm{Ti}_{6}>\mathrm{Ti}_{4}> \\ & \mathrm{Ti}_{2} \end{aligned}$	S25
$\begin{aligned} & \mathrm{RuO}_{2} / \mathrm{BaTi}_{4} \mathrm{O}_{9} \\ & \mathrm{RuO}_{2} / \mathrm{Ba}_{4} \mathrm{Ti}_{13} \mathrm{O}_{30} \\ & \mathrm{RuO}_{2} / \mathrm{Ba}_{2} \mathrm{Ti}_{9} \mathrm{O}_{20} \\ & \mathrm{RuO}_{2} / \mathrm{Ba}_{6} \mathrm{Ti}_{17} \mathrm{O}_{40} \end{aligned}$	- - - -	Orthorhombic Orthorhombic Monoclinic Monoclinic	Pnmm Abma P2 $1 / \mathrm{m}$ A2/a	$\begin{aligned} & 65.27 \\ & 66.43 \\ & 68.10 \\ & 68.93 \end{aligned}$	UV, water splitting	$\begin{aligned} & \mathrm{Ti}_{4}>\mathrm{Ti}_{13}> \\ & \mathrm{Ti}_{9}>\mathrm{Ti}_{17} \end{aligned}$	S26
$\begin{aligned} & \mathrm{RuO}_{2} / \mathrm{BaTi}_{4} \mathrm{O}_{9} \\ & \mathrm{RuO}_{2} / \mathrm{K}_{2} \mathrm{Ti}_{4} \mathrm{O}_{9} \end{aligned}$	-	Orthorhombic Monoclinic	Pnmm $\mathrm{C} 2 / \mathrm{m}$	$\begin{aligned} & 65.27 \\ & 68.21 \end{aligned}$	UV, water splitting	$\mathrm{Ba}>\mathrm{K}$	S27
$\begin{aligned} & \mathrm{NiO}_{\mathrm{x}} / \mathrm{La}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7} \\ & \mathrm{NiO}_{\mathrm{x}} / \mathrm{Pr}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7} \\ & \mathrm{NiO}_{\mathrm{x}} / \mathrm{Nd}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7} \end{aligned}$	$\begin{aligned} & 3.82 \\ & 2.99 \\ & 3.65 \end{aligned}$	Monoclinic Monoclinic Monoclinic	$\mathrm{P} 2_{1}$ P2 1 P2 1	$\begin{aligned} & 63.66 \\ & 64.48 \\ & 64.56 \end{aligned}$	UV, water splitting	$\begin{aligned} & \mathrm{La}>\mathrm{Pr}> \\ & \mathrm{Nd} \end{aligned}$	S28
$\begin{aligned} & \mathrm{RuO}_{2} / \mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7} \\ & \mathrm{RuO}_{2} / \mathrm{Sr}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7} \end{aligned}$	-	Orthorhombic Orthorhombic	Imma Imma	$\begin{aligned} & 65.41 \\ & 64.45 \end{aligned}$	UV, water splitting	$\mathrm{Sr}>\mathrm{Ca}$	S29
$\begin{aligned} & \mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7} \\ & \mathrm{Sr}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7} \end{aligned}$	$\begin{aligned} & 4.02 \\ & 3.86 \end{aligned}$	Orthorhombic Orthorhombic	Imma Imma	$\begin{aligned} & 65.41 \\ & 64.45 \end{aligned}$	UV, MO degradation	$\mathrm{Sr}>\mathrm{Ca}$	S30
$\begin{aligned} & \mathrm{RuO}_{2} / \mathrm{Ca}_{2} \mathrm{SnO}_{4} \\ & \mathrm{RuO}_{2} / \mathrm{Sr}_{2} \mathrm{SnO}_{4} \\ & \mathrm{RuO}_{2} / \mathrm{Ba}_{2} \mathrm{SnO}_{4} \end{aligned}$		Orthorhombic Tetragonal Tetragonal	Pbam I4/mmm I4/mmm	$\begin{aligned} & 63.01 \\ & 63.79 \\ & 64.62 \end{aligned}$	UV, water splitting	$\begin{aligned} & \mathrm{Ca}>\mathrm{Sr}> \\ & \mathrm{Ba} \end{aligned}$	S29
$\begin{aligned} & \mathrm{Pt} / \mathrm{SrCrO}_{4} \\ & \mathrm{Pt} / \mathrm{BaCrO}_{4} \end{aligned}$	$\begin{aligned} & 2.44 \\ & 2.63 \end{aligned}$	Monoclinic Orthorhombic	$\mathrm{P} 2_{1} / \mathrm{n}$ Pnma	$\begin{aligned} & 61.18 \\ & 59.19 \end{aligned}$	Vis or UV, water splitting	$\mathrm{Ba}>\mathrm{Sr}$	S31
$\begin{aligned} & \mathrm{Pt} / \mathrm{CuMn}_{2} \mathrm{O}_{4} \\ & \mathrm{Pt} / \mathrm{ZnMn}_{2} \mathrm{O}_{4} \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.23 \end{aligned}$	Tetragonal Tetragonal	I4 1_{1} amd I4 $/$ /amd	$\begin{aligned} & 65.07 \\ & 62.15 \end{aligned}$	Halogen lamp, water splitting	$\mathrm{Zn}>\mathrm{Cu}$	S32
$\begin{aligned} & \mathrm{Bi}_{2} \mathrm{MoO}_{6} \\ & \mathrm{Bi}_{2} \mathrm{WO}_{6} \end{aligned}$	$\begin{aligned} & 2.70 \\ & 2.80 \end{aligned}$	Orthorhombic Orthorhombic	- -	$\begin{aligned} & 58.19 \\ & 58.69 \end{aligned}$	Vis, O_{2} evolution	$\mathrm{Mo}>\mathrm{W}$	S33
$\begin{aligned} & \mathrm{ZnS} \\ & \mathrm{CdS} \end{aligned}$	$\begin{aligned} & 3.70 \\ & 2.50 \end{aligned}$		-	$\begin{aligned} & 67.88 \\ & 56.99 \end{aligned}$	UV, MO and Rhodamine 6G	$\mathrm{Cd}>\mathrm{Zn}$	S34

Electronic Supplementary Material for PCCP
This Journal is © The Owner Societies 2009

					degradation		
ZnS	-	-	-	67.88	UV, water	$\mathrm{Cd}>\mathrm{Zn}$	S 35
CdS	-	-	-	56.99	splitting		
$\mathrm{Pt} / \mathrm{CdS}$	2.40	-	-	56.99	Vis, water	$\mathrm{Cd}>$ NaIn	S 36
$\mathrm{Pt} / \mathrm{NaInS}_{2}$	2.30	Trigonal	R-3m	70.74	splitting		

1
2 Table S2 Photocatalytic compounds from the literature, grouped to illustrate
3 exceptions to the correlation between photocatalytic activity and packing factor (PF).
4 The exceptions are marked by * under "Activity" and explained in note a to f .

Catalyst	$E_{\mathrm{g}}(\mathrm{eV})$	Crystal system	Space group	PF (\%)	Measurement	Activity	Ref.
$\begin{aligned} & \mathrm{Pt} / \mathrm{Bi}_{2} \mathrm{InTaO}_{7} \\ & \mathrm{Pt} / \mathrm{Bi}_{2} \mathrm{FeTaO}_{7} \\ & \mathrm{Pt} / \mathrm{Bi}_{2} \mathrm{GaTaO}_{7} \end{aligned}$	$\begin{aligned} & 2.92 \\ & 2.42 \\ & 3.01 \end{aligned}$	Cubic Cubic Cubic		$\begin{aligned} & 53.13 \\ & 57.04 \\ & 56.12 \end{aligned}$	UV, water splitting	$\begin{array}{ll} \mathrm{In} \quad> & \mathrm{Fe} \\ >{ }^{\mathrm{a}} \mathrm{Ga} & \end{array}$	S37
$\begin{aligned} & \mathrm{Pt} / \mathrm{CaCo}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \\ & \mathrm{Pt} / \mathrm{SrCo}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \\ & \mathrm{Pt} / \mathrm{BaCo}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & 2.80 \\ & 2.46 \\ & 2.46 \end{aligned}$	Monoclinic Cubic Cubic	Pm3m Pm3m	$\begin{aligned} & 76.70 \\ & 79.21 \\ & 77.54 \end{aligned}$	Vis $(\lambda \geq 420$ nm), water splitting	$\begin{aligned} & \mathrm{Ba}>^{\mathrm{b}} \mathrm{Ca} \\ & >\mathrm{Sr} \end{aligned}$	S38
$\begin{aligned} & \mathrm{CaIn}_{0.5} \mathrm{Nb}_{0.5} \mathrm{O}_{3} \\ & \operatorname{SrIn}_{0.5} \mathrm{Nb}_{0.5} \mathrm{O}_{3} \\ & \mathrm{BaIn}_{0.5} \mathrm{Nb}_{0.5} \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & 4.17 \\ & 3.96 \\ & 3.51 \end{aligned}$	Orthorhombic Cubic Cubic	$\begin{aligned} & \text { Pama } \\ & \operatorname{Pm} 3 \mathrm{~m} \\ & \mathrm{Pm} 3 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 68.71 \\ & 72.83 \\ & 75.24 \end{aligned}$	Pt loading, UV, water splitting; $\mathrm{NiO}_{\mathrm{x}}$ loading, Vis $(\lambda \geq 420 \mathrm{~nm})$, water splitting	$\begin{aligned} & \mathrm{Ca}>\mathrm{Sr}> \\ & \mathrm{Ba} ; \\ & \mathrm{Ba}>^{*^{\mathrm{c}}} \mathrm{Ca}> \\ & \mathrm{Sr} \end{aligned}$	S39
$\begin{aligned} & \mathrm{RuO}_{2} / \mathrm{BaTi}_{4} \mathrm{O}_{9} \\ & \mathrm{RuO}_{2} / \mathrm{BaTi}_{5} \mathrm{O}_{11} \\ & \mathrm{RuO}_{2} / \mathrm{BaTi}_{2} \mathrm{O}_{5} \\ & \mathrm{RuO}_{2} / \mathrm{BaTiO}_{3} \end{aligned}$	$\begin{aligned} & 3.70 \\ & 3.80 \\ & 3.70 \\ & 3.70 \end{aligned}$	Orthorhombic Monoclinic Monoclinic Cubic	Pnmm P2 ${ }_{1} / n$ C2/m Pm-3m	$\begin{aligned} & 65.27 \\ & 68.96 \\ & 70.97 \\ & 82.24 \end{aligned}$	UV, water splitting	$\begin{aligned} & \mathrm{BaTi}_{4} \mathrm{O}_{9}> \\ & \mathrm{BaTi}_{2} \mathrm{O}_{5}>*^{\mathrm{d}} \\ & \mathrm{BaTi}_{5} \mathrm{O}_{11}> \\ & \mathrm{BaTiO}_{3} \end{aligned}$	S40
$\mathrm{Sr}\left(\mathrm{In}_{1 / 3} \mathrm{Nb}_{1 / 3} \mathrm{~Pb}_{1 / 3}\right) \mathrm{O}_{3}$ $\mathrm{Ba}\left(\mathrm{In}_{1 / 3} \mathrm{Nb}_{1 / 3} \mathrm{~Pb}_{1 / 3}\right)_{3}$	$\begin{aligned} & 3.10 \\ & 1.48 \end{aligned}$	Cubic Cubic	Pm3m Pm3m	$\begin{aligned} & 75.21 \\ & 75.51 \end{aligned}$	UV-Vis or Vis, MB and 4-Chlorophenol degradation	$\mathrm{Ba}>^{* \mathrm{e}} \mathrm{Sr}$	S18

NaTaO_{3}	3.96	Orthorhombic	-	80.46	UV, water	$\mathrm{Ta}>*^{\mathrm{f}} \mathrm{Nb}$	S 1
NaNbO_{3}	3.08	Orthorhombic	Pbma	78.60	splitting		
KTaO_{3}	3.42	Cubic	Pm3m	85.03	UV, water	$\mathrm{Ta}>*^{\mathrm{f}} \mathrm{Nb}$	S 1
KNbO_{3}	3.14	Orthorhombic	Cm2m	83.38	splitting		

a. Fe absorbs more light due to d^{5} configuration of Fe^{3+}.
b. Ca compound, having a higher E_{g}, absorbs less light when using a visible light source.
c. All compounds have relatively high E_{g}, hence inefficient light absorption when using a visible light source.
d. Crystallinity of $\mathrm{BaTi}_{5} \mathrm{O}_{11}$ was reported to be poor.
e. Large difference in E_{g} makes comparison difficult; Ba compound has a much lower E_{g} and more absorption.
f. The considerably larger E_{g} of the Ta compounds implies a higher conduction band minimum, hence a higher reduction potential for $\mathrm{H}^{+} / \mathrm{H}_{2}$.

3. The UV-Vis spectra for the antimonates

Fig. S1 UV-Vis for the antimonates photocatalysts*

* As shown in Fig. S1, the light absorbance starts at about 350 nm for all the antimonate samples, while a uniform red shift of absorbance edge is observed in the order of $\mathrm{CaSb}_{2} \mathrm{O}_{6}(\lambda=346 \mathrm{~nm}), \mathrm{SrSb}_{2} \mathrm{O}_{6}(\lambda=349 \mathrm{~nm})$, and $\mathrm{BaSb}_{2} \mathrm{O}_{6}(\lambda=358 \mathrm{~nm})$. So
the intrinsic band gaps of $\mathrm{CaSb}_{2} \mathrm{O}_{6}, \mathrm{SrSb}_{2} \mathrm{O}_{6}$ and $\mathrm{BaSb}_{2} \mathrm{O}_{6}$ are estimated at 3.59 eV , 3.55 eV and 3.46 eV , respectively, using the widely-applied equation:

```
Eg (eV) = 1241 / \lambda(nm).
```


4. The MB mineralization measurements

Fig. S2 MB mineralization over antomonate photocatalysts under UV-irradiation (Cat:

$$
\left.0.6 \mathrm{~g}, \mathrm{MB}: 4.5 \mathrm{mg}, \mathrm{H}_{2} \mathrm{O}: 300 \mathrm{~mL}\right)^{*}
$$

* The MB mineralization results show that $\mathrm{BaSb}_{2} \mathrm{O}_{6}$ is most active while $\mathrm{CaSb}_{2} \mathrm{O}_{6}$ is least. The dye mineralization degrees after the reaction time of 80 min , are about 65% for $\mathrm{BaSb}_{2} \mathrm{O}_{6}, 38 \%$ for $\mathrm{SrSb}_{2} \mathrm{O}_{6}$, and 9% for $\mathrm{CaSb}_{2} \mathrm{O}_{6}$, respectively.

References:

S1 J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydrog. Energ., 2007, 32, 2269.

S2 A. Kudo, Int. J. Hydrog. Energ., 2006, 31, 197.
S3 H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.

S4 H. Kato and A. Kudo, Chem. Phys. Lett., 1998, 295, 487.
S5 H. Kato and A. Kudo, Chem. Lett., 1999, 1207.
S6 T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi and Y. Takita, J. Photochem. Photobiol. A, 2004, 167, 149.

S7 D. Yamasita, T. Takata, M. Hara, J. N. Kondo and K. Domen, Solid State Ionics, 2004, 172, 591.

S8 J. Ye, Z. Zou and A. Matsushita, Int. J. Hydrog. Energ., 2003, 28, 651.
S9 H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
S10 A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.

S11 Z. Zou and H. Arakawa, J. Photochem. Photobiol. A, 2003, 158, 145.

S12 J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsushita and T. Shishido, J. Photochem. Photobiol. A, 2002, 148, 79.

S13 J. Yin, Z. Zou and J. Ye, J. Phys. Chem. B, 2004, 108, 8888.
S14 D. Wang, J. Tang, Z. Zou and J. Ye, Chem. Mater., 2005, 17, 5177.
S15 D. Wang, Z. Zou and J. Ye, Catal. Today, 2004, 93-95, 891.
S16 J. Luan, S. Zheng, X. Hao, G. Luan, X. Wu and Z. Zou, J. Braz. Chem. Soc., 2006, 17, 1368.

S17 J. F. Luan, X. P. Hao, S. R. Zheng, G. Y. Luan and X. S. Wu, J. Mater. Sci., 2006, 41, 8001.

S18 S. G. Hur, T. W. Kim, S. J. Hwang and J. H. Choy, J. Photochem. Photobiol. A, 2006, 183, 176.

S19 S. G. Hur, T. W. Kim, S. J. Hwang, H. Park, W. Choi, S. J. Kim and J. H. Choy, J. Phys. Chem. B, 2005, 109, 15001.

S20 J. Sato, N. Saito, H. Nishiyama and Y. Inoue, J. Phys. Chem. B, 2001, 105, 6061. S21 J. Tang, Z. Zou and J. Ye, Chem. Mater., 2004, 16, 1644.

S22 J. Sato, H. Kobayashi, N. Saito, H. Nishiyama and Y. Inoue, J. Photochem. Photobiol. A, 2003, 158, 139.

S23 R. Abe, K. Sayama, K. Domen and H. Arakawa, Chem. Phys. Lett., 2001, 344, 339.

S24 H. Song, H. Jiang, T. Liu, X. Liu and G. Meng, Mater. Res. Bull., 2007, 42, 334.
S25 Y. Inoue, T. Kubokawa and K. Sato, J. Phys. Chem., 1991, 95, 4059.
S26 M. Kohno, K. Sato and Y. Inoue, J. Chem. Soc. Faraday Trans., 1998, 94, 89.
S27 S. Ogura, K. Sato and Y. Inoue, Phys. Chem. Chem. Phys., 2000, 2, 2449.
S28 D. W. Hwang, J. S. Lee and S. H. Oh, J. Phys. Chem. B, 2003, 107, 4963.

S29 J. Sato, N. Saito and Y. Inoue, J. Photochem. Photobiol. A, 2002, 148, 85.

S30 X. Lin, F. Huang, W. Wang, Y. Wang and J. Shi, Appl. Catal. A, 2006, 313, 218.
S31 J. Yin, Z. Zou and J. Ye, Chem. Phys. Lett., 2003, 378, 24.
S32 Y. Bessekhouad and M. Trari, Int. J. Hydrog. Energ., 2002, 27, 357.
S33 A. Kudo and S. Hijii, Chem. Lett., 1999, 1103.

S34 S. K. Kansal, M. Singh and D. Sud, J. Hazard. Mater. 2007, 141, 581.
S35 A. M. Roy and G. C. De, J. Photochem. Photobiol. A, 2003, 157, 87.
S36 A. Kudo, Int. J. Hydrog. Energ., 2007, 32, 2673.
S37 J. Wang, Z. Zou and J. Ye, J. Phys. Chem. Solids, 2005, 66, 349.
S38 J. Yin, Z. Zou and J. Ye, J. Phys. Chem. B, 2003, 107, 4936.
S39 J. Yin, Z. Zou and J. Ye, J. Phys. Chem. B, 2003, 107, 61.
S40 Y. Yamashita, M. Tada, M. Kakihana, M. Osada and K. Yoshida, J. Mater. Chem., 2002, 12, 1782.

