Supporting information

for

Effect of Secondary Ligands Size on Energy Transfer and Electroluminescent Efficiencies for a Series of Europium (III) Complexes, A Density Functional Theory Study

Submitted to journal- Phys. Chem. Chem. Phys.by:

Xiao-Na Li,^{a,b} Zhi-Jian Wu,^a Zhen-Jun Si,^a Liang-Zhou,^{a,b} Xiao-Juan Liu,^a and Hong-Jie Zhang^{*,a}

^{*a*} State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and ^{*b*} Graduate School of the Chinese, Academy of Sciences, Beijing, People's Republic of China

^{*} Corresponding author. Phone: +86 431 85262127. Fax: +86 431

^{85698041.} E-mail: hongjie@ciac.jl.cn (H.-J. Zhang).

Electronic Supplementary Material for PCCP This Journal is © The Owner Societies 2009

Table S1 Geometrical parameters in T₁ state of the seven complexes

	Eu-Phen	Eu-PyPhen	Eu-MPP	Eu-DPPz	Eu-MDPz	Eu-DDPz	Eu-BDPz
Eu - O1	2.398	2.480	2.402	2.404	2.405	2.405	2.406
Eu - O2	2.425	2.358	2.418	2.425	2.424	2.425	2.425
Eu - O3	2.381	2.381	2.450	2.382	2.383	2.385	2.385
Eu - O4	2.395	2.390	2.324	2.398	2.398	2.398	2.399
Eu - O5	2.353	2.415	2.424	2.417	2.418	2.419	2.419
Eu - 06	2.487	2.402	2.399	2.410	2.410	2.409	2.410
Eu - N1	2.676	2.679	2.696	2.680	2.679	2.679	2.679
Eu - N2	2.687	2.689	2.704	2.680	2.679	2.677	2.676

orbital	Eu-Phen	Eu-PyPhen	Eu-MPP	Eu-DPPz	Eu-MDPz	Eu-DDPz	Eu-BDPz
L+5	$\pi^*(Phen)$	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi^*(DDPz)$	π*(BDPz)
L+4	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi^*(TTA+MPP)$	$\pi^*(\text{DPPz})$	$\pi^*(MDPz)$	$\pi^*(DDPz+TTA)$	$\pi^*(TTA)$
L+3	$\pi^*(TTA+Phen)$	$\pi^*(PyPhen+TTA)$	$\pi^*(TTA+MPP)$	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi(TTA)$	$\pi^*(TTA)$
L+2	π^* (Phen+TTA)	$\pi^*(PyPhen+TTA)$	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi^*(TTA)$	$\pi^*(TTA)$
L+1	$\pi^*(TTA+Phen)$	$\pi^*(PyPhen)$	$\pi^*(MPP)$	$\pi^*(\text{DPPz})$	$\pi^*(MDPz)$	$\pi^*(DDPz)$	$\pi^*(BDPz)$
L	$\pi^*(Phen)$	$\pi^*(PyPhen)$	$\pi^*(MPP)$	$\pi^*(\text{DPPz})$	$\pi^*(MDPz)$	$\pi^*(DDPz)$	$\pi^*(BDPz)$
Н	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
H-1	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
Н-2	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
Н-3	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
H-4	π (TTA+Phen)	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
Н-5	π (TTA+Phen)	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
H-6	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	π (TTA+MPDz)	$\pi(TTA)$	$\pi(TTA)$
H-7	π (TTA+Phen)	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
H-8	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$
H-9	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$	$\pi(TTA)$

 Table S2 Frontier molecular orbital composition of the seven complexes

Electronic Supplementary Material for PCCP This Journal is © The Owner Societies 2009

Complex	state	energy	f	character	exptl ²⁴
Eu-Phen	S_1	357/3.47	0.0078	$H \rightarrow L/\pi(TTA) \rightarrow \pi^*(Phen)LLCT$	
				H-1 \rightarrow L/ π (TTA) \rightarrow π *(Phen)LLCT	
	S ₁₆	320/3.87	0.7919	H-2 \rightarrow L/ π (TTA) \rightarrow π *(Phen)ILCT	
				$H \rightarrow L+3/\pi(TTA) \rightarrow \pi^{*}(Phen+TTA)LLCT/ILCT$	
	S_{70}	253/4.90	0.4313	H-9 \rightarrow L+3/ π (TTA) \rightarrow π *(Phen+TTA)ILCT/ILCT	
Eu-PyPhen	S_1	358/3.47	0.0098	$H \rightarrow L/\pi(TTA) \rightarrow \pi^*(PyPhen)LLCT$	340
	S_{20}	321/3.87	0.7164	H-2 \rightarrow L+1/ π (TTA) \rightarrow π *(PyPhen)LLCT	
				H-2 \rightarrow L+3/ π (TTA) \rightarrow π *(PyPhen+TTA)LLCT/ILCT	
	S ₂₁	318/3.90	0.2302	H-2 \rightarrow L+4/ π (TTA) \rightarrow π *(TTA)ILCT	298
	S ₈₉	254/4.88	0.3928	H-12 \rightarrow L+5/ π (PyPhen) \rightarrow π^* (TTA) ILCT/LLCT	
Eu-MPP	S_1	357/3.48	0.0100	$H \rightarrow L+1/\pi(TTA) \rightarrow \pi^*(MPP)LLCT$	
				H-1 \rightarrow L+1/ π (TTA) \rightarrow π *(MPP)LLCT	
	S ₂₀	320/3.87	0.8397	$H \rightarrow L + 4/\pi (TTA) \rightarrow \pi^* (MPP + TTA) LLCT/ILCT$	340
				H-2 \rightarrow L+1/ π (TTA) \rightarrow π *(MPP)LLCT	
	S_{86}	257/4.82	0.3595	H-14 \rightarrow L+5/ π (MPP) \rightarrow π^* (TTA) LLCT	260
	S_{88}	255/4.85	0.3543	H-9 \rightarrow L+5/ π (TTA) \rightarrow π *(TTA)ILCT	
Eu-DPPz	\mathbf{S}_1	401/3.09	0.0060	$H \rightarrow L/\pi(TTA) \rightarrow \pi^*(DPPz)LLCT$	
	S ₂₄	320/3.87	0.6323	H-2 \rightarrow L+1/ π (TTA) \rightarrow π *(DPPz)LLCT	342
				$H \rightarrow L + 4/\pi (TTA) \rightarrow \pi^* (DPPz) LLCT$	
	S ₅₃	278/4.46	0.2468	H-6 \rightarrow L+1/ π (TTA) \rightarrow π *(DPPz)LLCT	
				$H \rightarrow L+3/\pi(TTA) \rightarrow \pi^*(TTA)ILCT$	
	S ₅₄	278/4.46	0.4908	H-3 \rightarrow L+5/ π (TTA) \rightarrow π *(TTA)ILCT	274
Eu-MDPz	S_1	394/3.15	0.0074	$H \rightarrow L/\pi(TTA) \rightarrow \pi^*(MDPz)LLCT$	

Table S3 Calculated absorption of the investigated complexes in CH_2Cl_2 media at the TD-B3LYP level, together with experimental values

				H-4 \rightarrow L/ π (TTA) \rightarrow π *(MDPz)LLCT	
	S_{21}	321/3.87	0.4820	H-4 \rightarrow L/ π (TTA) \rightarrow π *(MDPz)LLCT	342
				$H \rightarrow L+5/\pi(TTA) \rightarrow \pi^*(TTA)ILCT$	
	S_{50}	282/4.40	0.3378	H-6 \rightarrow L+3/ π (TTA+MDPZ) \rightarrow π *(TTA)LLCT/ILCT	278
	S_{51}	281/4.41	0.2796	H-6→L+2/ π (TTA+MDPZ)→ π *(TTA)LLCT/ILCT	
Eu-DDPz	\mathbf{S}_1	389/3.19	0.0010	$H \rightarrow L/\pi(TTA) \rightarrow \pi^*(DDPz)LLCT$	
	S_{20}	321/3.87	0.6008	H-2 \rightarrow L+4/ π (TTA) \rightarrow π *(TTA+DDPz)LLCT/ILCT	340
				H-2 \rightarrow L+1/ π (TTA) \rightarrow π *(DDPz)LLCT	
	S_{44}	286/4.34	0.4911	H-5 \rightarrow L+2/ π (TTA+DDPz) \rightarrow π *(TTA)LLCT/ILCT	280
				H-3 \rightarrow L+5/ π (DDPz) \rightarrow π *(DDPz)ILCT	
Eu-BDPz	\mathbf{S}_1	492/2.52	0.0203	$H \rightarrow L/\pi(TTA) \rightarrow \pi^*(BDPz)LLCT$	
	S_{25}	327/3.79	0.4427	H-7 \rightarrow L/ π (TTA) \rightarrow π *(BDPz)LLCT	338
	S_{32}	317/3.92	0.1675	H-1 \rightarrow L+5/ π (BDPz) \rightarrow π *(BDPz)ILCT	
				H-2 \rightarrow L+5/ π (TTA) \rightarrow π *(BDPz)LLCT	
	S_{33}	316/3.92	0.1220	H-1 \rightarrow L+5/ π (BDPz) \rightarrow π *(BDPz)ILCT	