Supplementary material

<u>Table S1</u>: Number of Cs⁺ cations "coordinated" (within 3.5 Å) to each NBA⁴⁻ with different lifetimes (in ns) in solutions **A** (methanol : water) and **D** (pure water).

<u>Table S2</u>: Average number CN of M^+ cations coordinated to NBA⁴⁻ during the last 3 ns of dynamics (averaged over 3 ns for all M^+ ions).

<u>Table S3</u>: Number of the M^+ ions (Cs⁺, Na⁺) within 3.5 Å, and of Me₄N⁺ ions within 5 Å from NBA⁴⁻ in solutions A - D.

<u>Figure S1</u>: Chemical shifts δ from ¹H-NMR titrations for NBA (2.0 x 10⁻³ mole.L⁻¹) in the presence of 2 equivalents of K⁺ (a) and 2 equivalents of Na⁺ (b) as a function of pH at 25.0 °C (CD₃OD:D₂O-80:20).

<u>Figure S2</u>: Potentiometric titration curves of NBA (1.5 x 10^{-3} mole.L⁻¹), without and with various concentrations of K⁺ (a) and Na⁺ (b) cations.at 25.0 °C

Figure S3 : UV-Visible spectra variations at pH 9.9 for various Cs⁺ to NBA (0 to 8) ratios.

<u>Figure S4</u>: System C : ϕ_1 (in red) and ϕ_2 (in blue) angles (defined in Scheme 1) as a function of time (in ns) for each NBA⁴⁻ ligand.

<u>Figure S5</u>: $\mathbf{A} - \mathbf{D}$ solutions: RDFs between the center- of -mass of NBA⁴⁻ and the M⁺ cations (Cs⁺, Na⁺). Averages over the 5 *EE* forms (in black) and 5 *ZZ* forms (in red) and corresponding integration numbers (within 10 Å).

<u>Figure S6a</u>: System C : Distances between the center of mass of each NBA⁴⁻ (*ZZ*) molecule and Cs^+ (left) or Na⁺ (right) cations as a function of time (last 2 ns of dynamics).

<u>Figure S6b</u> : System C: Distances between the center of mass of each NBA⁴⁻ (*EE*) molecule and Cs^+ (left) or Na⁺ (right) cations as a function of time (last 2 ns of dynamics).

Figure S7 : Initial (*left*), mixed (*middle*) and final (*right*) views of system A.

<u>Figure S8</u>: NBA⁴⁻ in a methanol:water 80:20 solution (A - C) and in pure water (D). Final views of the solvent boxes.

<u>Figure S9:</u> **A** – **D** solutions: RDFs $X^{+...}O_{NBA}$ (first column), $X^{+...}O_{wat}$ (red, second column), $X^{+...}O_{MeOH}$ (black, second column), N _{Me4N+}...O_{wat} (red, third column), N _{Me4N+}...O_{MeOH} (black, third column).

<u>Figure S10</u>: $\mathbf{F} - \mathbf{K}$ aqueous solutions: NBA...NBA RDFs (between the center of mass of NBA's) in \mathbf{F} (*black*), \mathbf{H} (*red*), \mathbf{I} (*green*), \mathbf{J} (*blue*) and \mathbf{K} (*pink*). Integration numbers within 15 Å.

<u>Figure S11</u>: NBA systems in a methanol:water 80:20 solution (A,E) and pure water (D,G). Final views of the solvent boxes.

<u>Figure S12</u>: Chemical shifts of the H₃ proton vs the NBA concentration in aqueous medium (pH = 8.3) at 25.0°C.

<u>Figure S13</u>: Chemical shifts δ from ¹H-NMR titrations for NBA (2.0 x 10⁻³ mole.L⁻¹) as a function of pH at 25.0 °C in aqueous solution

	<u>Lifetime</u>	< 0.1 ns	0.1 - 0.5 ns	0.5 -1 ns	>1 ns	\diamond				
	NBA									
Solution A (methanol : water 80:20)										
1	EE	0	1	0	1	1.8				
2	EE	0	1	0	1	1.7				
3	EE	1	1	0	2	2.1				
4	EE	0	0	0	1	0.6				
5	EE	0	0	0	1	1.0				
	< <i>EE</i> >	0.2	0.6	0.0	1.2	1.4				
6	ZZ	0	0	0	1	1.0				
7	ZZ	0	0	0	1	1.0				
8	ZZ	0	0	0	1	1.0				
9	ZZ	1	1	1	1	2.2				
10	ZZ	0	1	1	2	2.7				
	< <u>ZZ</u> >	0.2	0.4	0.4	1.2	1.6				
Solution D (pure water)										
1	EE	4	1	1	0	1.2				
2	EE	2	1	1	0	0.7				
3	EE	3	1	1	0	0.6				
4	EE	4	1	0	1	0.9				
5	EE	5	1	1	0	1.1				
	< <i>EE</i> >	3.8	1.0	0.8	0.2	0.9				
6	ZZ	3	5	0	0	0.9				
7	ZZ	2	4	0	0	1.4				
8	ZZ	3	1	1	0	1.1				
9	ZZ	4	2	1	0	1.1				
10	ZZ	3	2	0	0	0.8				
	< <u>ZZ</u> >	3.0	2.8	0.4	0.0	1.1				

<u>Table S1 :</u> Number of Cs^+ cations "coordinated" (within 3.5 Å) to each NBA⁴⁻ with different lifetimes (in ns) in solutions **A** (methanol : water) and **D** (pure water).

NBA		Α		В		С		D		Ι		J		
		Cs^+	Me_4N^+	Na^+	Me_4N^+	Cs^+	Na^+	Me_4N^+	Cs^+	Me_4N^+	Cs^+	Cs ^{+ a)}	Cs^+	Me_4N^+
1	EE	1.8	0.7	3.0	0.9	0.5	1.0	3.1	1.2	1.2	0.2	1.6	0.2	2.3
2	EE	1.7	1.1	1.0	1.8	1.9	1.5	0.5	0.7	0.9	0.2	1.8	1.3	2.5
3	EE	2.1	0.8	0.0	3.0	2.2	1.8	0.8	0.6	1.7	0.2	1.2	1.6	1.7
4	EE	0.6	2.2	0.0	2.2	0.0	2.0	1.4	0.9	0.5	0.2	1.7	1.0	1.9
5	EE	1.0	1.7	2.0	2.2	2.8	0.0	0.6	1.1	1.1	0.3	2.0	1.5	2.1
< E	E>	1.4	1.3	1.2	2.0	1.5	1.3	1.3	0.9	1.1	0.2	1.7	1.1	2.1
6	ZZ	1.0	2.3	2.0	0.8	1.2	1.9	1.9	0.9	0.9	0.3	2.0	1.6	2.1
7	ZZ	1.0	1.8	1.0	1.8	1.0	0.0	1.4	1.4	0.6	0.2	1.9	1.8	0.7
8	ZZ	1.0	1.6	2.7	0.3	1.0	1.0	1.3	1.1	0.7	0.2	1.8	2.1	0.4
9	ZZ	2.2	0.6	2.0	0.9	1.9	1.0	1.5	1.1	0.7	0.2	1.4	1.4	0.7
10	ZZ	2.7	0.4	1.4	2.0	2.6	1.2	0.2	0.8	1.4	0.2	1.9	1.3	0.5
<z< td=""><td>Z></td><td>1.6</td><td>1.3</td><td>1.8</td><td>1.2</td><td>1.6</td><td>1.0</td><td>1.3</td><td>1.1</td><td>0.9</td><td>0.2</td><td>1.8</td><td>1.6</td><td>0.9</td></z<>	Z>	1.6	1.3	1.8	1.2	1.6	1.0	1.3	1.1	0.9	0.2	1.8	1.6	0.9

Supplementary Material for PCCP

This journal is © The Owner Societies 2009

<u>Table S2</u>: Average number CN of M^+ cations coordinated (within 3.5 Å) to NBA⁴⁻ (within 3.5 Å) during the last 3 ns of dynamics (averaged over 3 ns for all M^+ ions).

	Α	В	С		D	
M^+	Cs^+	Na^+	Cs^+	Na^+	Cs^+	
$M^{+}O_{NBA}$	2.1	2.4	1.6	1.6	1.1	
M ⁺ O _{methanol}	2.7	2.4	3.0	2.8	-	
$M^{+}O_{wat}$	2.2	1.9	2.1	1.7	6.0	
X ⁺ O _{solvent}	4.9	4.3	5.1	4.5	6.0	
N _{NMe4+} O _{methanol}	6.3	6.2	6.	6.2		
N _{NMe4+} O _{wat}	4.3	4.2	4.	14.0		
N _{NMe4+} O _{solvent}	10.6	10.4	10	14.0		

<u>Table S3</u>: Number of the M^+ ions (Cs⁺, Na⁺) within 3.5 Å, and of Me₄N⁺ ions within 5 Å from NBA⁴⁻ in solutions A - D.

<u>Figure S1</u>: Chemical shifts δ from ¹H-NMR titrations for NBA (2.0 x 10⁻³ mole.L⁻¹) in the presence of 2 equivalents of K⁺ (a) and 2 equivalents of Na⁺ (b) as a function of pH at 25.0 °C (CD₃OD:D₂O-80:20).

<u>Figure S2</u>: Potentiometric titration curves of NBA (1.5 x 10^{-3} mole.L⁻¹), without and with various concentrations of K⁺ (a) and Na⁺ (b) cations.at 25.0 °C

Figure S3 : UV-Visible spectra variations at pH 9.9 for various Cs⁺ to NBA (0 to 8) ratios.

<u>Figure S4</u>: System C : ϕ_1 (in red) and ϕ_2 (in blue) angles (defined in Scheme 1) as a function of time (in ns) for each NBA⁴⁻ ligand.

Supplementary Material for PCCP This journal is © The Owner Societies 2009

<u>Figure S5</u>: $\mathbf{A} - \mathbf{D}$ solutions: RDFs between the center- of -mass of NBA⁴⁻ and the M⁺ cations (Cs⁺, Na⁺). Averages over the 5 *EE* forms (in black) and 5 *ZZ* forms (in red) and corresponding integration numbers (within 10 Å).

Supplementary Material for PCCP This journal is © The Owner Societies 2009

<u>Figure S6a</u>: System C : Distances between the center of mass of each NBA⁴⁻ (*ZZ*) molecule and Cs^+ (left) or Na⁺ (right) cations as a function of time (last 2 ns of dynamics).

Supplementary Material for PCCP This journal is © The Owner Societies 2009

<u>Figure S6b</u>: System C: Distances between the center of mass of each NBA⁴⁻ (*EE*) molecule and Cs^+ (left) or Na⁺ (right) cations as a function of time (last 2 ns of dynamics).

Figure S7 : Initial (*left*), mixed (*middle*) and final (*right*) views of system A.

<u>Figure S8</u>: NBA⁴⁻ in a methanol:water 80:20 solution (A - C) and in pure water (D). Final views of the solvent boxes.

<u>Figure S9</u>: A - D solutions: RDFs X^{+...}O_{NBA} (first column), X^{+...}O_{wat} (red, second column), X^{+...}O_{MeOH} (black, second column), N_{Me4N+}^{...}O_{wat} (red, third column), N_{Me4N+}^{...}O_{MeOH} (black, third column).

<u>Figure S10</u>: $\mathbf{F} - \mathbf{K}$ aqueous solutions: NBA^{...}NBA RDFs (between the center of mass of NBA's) in \mathbf{F} (*black*), \mathbf{H} (*red*), \mathbf{I} (*green*), \mathbf{J} (*blue*) and \mathbf{K} (*pink*). Integration numbers at 15 Å.

<u>Figure S11</u>: NBA systems in a methanol:water 80:20 solution (A,E) and pure water (D,G). Final views of the solvent boxes.

<u>Figure S12</u> : Chemical shifts of the H₃ proton vs the NBA concentration in aqueous medium (pH = 8.3) at 25.0°C.

The dimerisation constant K_d has been calculated according the equation ^{a)}

is the total concentration of NBA

$$\delta = \delta_m + (\delta_d - \delta_m) \left(\frac{4K_d x + 1 - \sqrt{8K_d x + 2}}{4K_d x} \right)$$

х

where

 K_d the dimerisation constant

 $\delta_{\rm m}$ the chemical shift for the nucleus in the monomer

 $\delta_{\rm d}$ the chemical shift for the nucleus in the dimer

a) From D. B. Davies, L. N. Djimant, A. N. Veselkov, J. Chem. Soc. Faraday Trans., 92 (1996) 383-390.

<u>Figure S13</u>: Chemical shifts δ from ¹H-NMR titrations for NBA (2.0 10⁻³ mole.L⁻¹) as a function of pH at 25.0 °C in aqueous solution.