Supplementary Information

Controlling Intermolecular Spin Interactions of La@C₈₂ in Empty Fullerene Matrices

Yasuhiro Ito,^{*a*} Jamie H. Warner,^{*a*} Richard Brown,^{*a*} Mujtaba Zaka,^{*a*} Rudolf Pfeiffer,^{*b*} Takayuki Aono,^{*c*} Noriko Izumi,^{*c*} Haruya Okimoto,^{*c*} John J. L. Morton,^{*a*,*d*} Arzhang Ardavan,^{*d*} Hisanori Shinohara,^{*c*} Hans Kuzmany,^{*b*} Herwig Peterlik,^{*b*} and G. Andrew D. Briggs^{*a*}

^aDepartment of Materials, Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), University of Oxford, Parks Rd, Oxdord, OX1 3PH, UK. E-mail: yasuhiro.ito@materials.ox.ac.uk

^bFaculty of Physics, University of Vienna, Strudlhofgasse 4, Vienna, A-1090, Austria

^cDepartment of Chemistry and Institute for Advanced Research, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan

^dCentre for Advanced Electron Spin Resonance (CAESR), Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd, Oxford, OX1 3PU, UK

	in C ₆₀				in C ₇₀			in C ₇₈		
Concentration (mol%)	0.1	0.5	1	0.1 0.5		1	0.1	0.5	1	
FWHM LW (mT)	0.098	0.102	0.102	0.076	0.088	0.090	0.075	0.088	0.090	
Exchange frequency (Hz)	4.5×10^5	4.5×10^5 $9.0 \times 10^6 (58 \%)$ $9.0 \times 10^6 (58 \%)$ $4.5 \times 10^5 (42 \%)$ $4.5 \times 10^5 (42 \%)$			$4.5 imes 10^5$			4.5×10^{5}		
	in C ₈₂			in C ₈₄						
Concentration (mol%)	0.1	0.5	1	0.1	0.5	1				
FWHM LW (mT)	0.050	0.072	0.075	0.073	0.081	0.082				
Exchange frequency (Hz)	$4.5 imes 10^5$			$4.5 imes 10^5$						

Table S1 Numerical data of the simulated ESR spectra of $La@C_{82}$ in C_{2n} matrices. Anisotropic g and a tensor, rotational correlation time are (2.0021 2.0013 2.0010), (2.15 2.25 4.85) and 4 ns, respectively.

C _{2n} matrices	Concentration	<i>k</i> ₁ (μT)	$\tau_{\rm r}$ (ns)		
	0.1 mol%	-1.14	0.25		
C ₆₀	0.5 mol%	-0.986	0.22		
	1 mol%	-2.70	0.59		
C ₇₀	0.1 mol%	-1.96	0.43		
	0.5 mol%	-1.37	0.30		
	1 mol%	-2.24	0.49		
	0.1 mol%	-8.91	0.19		
C ₇₈	0.5 mol%	-1.36	0.30		
	1 mol%	-1.29	0.28		
	0.1 mol%	-0.640	0.14		
C ₈₂	0.5 mol%	-1.02	0.22		
	1 mol%	-1.45	0.31		
	0.1 mol%	-0.784	0.17		
C_{84}	0.5 mol%	-0.645	0.14		
	1 mol%	-0.700	0.52		

Table S2 Numerical data of k_1 parameter and the rotational correlation time τ_r calculated by the equation S1.

The linear $m_{\rm I}$ contribution (equation 1) is determined avoiding contribution from inhomogeneous broadening and other unspecified interactions.¹ The rotational correlation time $\tau_{\rm r}$ can be calculated by the equation S1:

$$k_{1} = \frac{1}{15} \frac{2}{3} \Delta g \frac{\mu_{B} B_{0}}{\hbar} \cdot \frac{2}{3} \Delta a \cdot \left[4\tau_{r} + \frac{3\tau_{r}}{1 + (\omega\tau_{r})^{2}} \right]$$
(S1)

where μ_B , B_0 , \hbar , ω are Bohr magneton, the magnetic field, Planck's constant and the microwave frequency of measurements, respectively. Differences of principle values of the *g* matrix and the hfi tensor have been determined previously as $\Delta g = g_1 - g_2 = 0.007$ and $\Delta a = a_1 - a_2 = 5$ MHz.²

- 1 P. Jakes, A. Gembus, K. P. Dinse, and K. Hata, J. Chem. Phys., 2008, 128.
- 2 M. Rubsam, P. Schweitzer, and K. P. Dinse, J. Phys. Chem., 1996, 100, 19310.

Supplementary Material for PCCP This journal is © The Owner Societies 2010

Sample	Lattice	а	С	Volume	а	a'	α	Volume	c/a	
		(hex)	(hex)	(hex)	(fcc)	(rhom)	(rhom)	(rhom)		
C ₆₀ +0.1mol%La	fcc	1.000	2.444	2.12	1.413	0.9984	60.1	0.706	2.444	
C ₆₀ +1mol%La	hcp	1.001	1.638	1.42					1.637	
C ₇₈ +0.1mol%La	uh a uch a h a dua l	uh a uah a h a dua l	1.249	2 204	4 22		1 200	57.0	1 4 4	25(9
C ₇₈ +1mol%La	rnombonedrai	1.248	3.204	4.32		1.288	57.9	1.44	2.308	
C ₈₂ +0.1mol%La	hcp	1.120	1.836	1.99					1.645	
C ₈₂ +1mol%La	rhombohedral	1.297	3.335	4.86		1.340	57.9	1.62	2.571	
C ₈₄ +0.1mol%La	who we had a dwal	1 2 1 0	2 422	5.00		1 260	57.2	1 70	2 6 1 1	
C ₈₄ +1mol%La	momooneural	1.510	3.422	5.09		1.309	57.2	1.70	2.011	

Table S3 Numerical data of crystal structures for C_{2n} powder with La@C₈₂. All dimensions are in nm, the angles in degrees and the volume in nm³. The *a* and *c* axes of the corresponding hexagonal unit cells are given for easier comparison of the respective amount of distortion from the ideal lattices, i.e. from *c/a*=1.633 for hcp and *c/a*=2.449 for fcc lattice. The error of the experimental measurements is less than 0.5 percent.

Fig. S1 a)Schematic model of La@C₈₂ in C_{2n} fcc-crystals; b)Concentration dependence of the distance between La@C₈₂ molecules in C_{2n} fcc-crystals.

In order to determine the range at concentrations to be examined, we calculated the change in average inter-fullerene distance as a function of the concentration. If it is assumed that $La@C_{82}$ molecules are dispersed completely by empty fullerene (C_{2n}) matrices, that is, $La@C_{82}$ molecules are located at the center of C_{2n} fcc-crystals (Fig. S1a), the distance *L* between $La@C_{82}$ molecules is calculated by follows.³

$$L = a \times (c / 25)^{1/3}$$
(S2)

$$a = 1.31 \times d(\mathcal{C}_{2n}) + 0.492 \tag{S3}$$

$$d(C_{2n}) = 0.71 \times (2n / 60)^{1/2}$$
(S4)

where *C*, *a* and $d(C_{2n})$ are concentration of La@C₈₂ (mol%), lattice constant of C_{2n} fcc-crystals and diameter of empty fullerenes, respectively. A concentration range between $0.1 \rightarrow 1 \mod \%$ is chosen because in this range, a small variation in the concentration leads to a large change in the inter-fullerene distance.

3 Y. Saito, N. Fujimoto, K. Kikuchi, and Y. Achiba, Phys. Rev. B, 1994, 49, 14794.

Fig. S2 a)Exchange frequency; and b)FWHM linewidth dependences of the hyperfine structure of $La@C_{82}$. These spectra are simulated by EasySpin software.⁴

4 S. Stoll and A. Schweiger, J. Mag. Res., 2006, 178, 42.

Fig. S3 Saturation curves of La@C₈₂ in 0.1, 0.5 and 1 mol% in a)C₇₀; b)C₇₈; and c)C₈₄ matrices at room temperature. Microwave frequency and modulation amplitude are 9.867 GHz and 0.025 mT, respectively.

Fig. S4 Microwave power dependence of the ESR spectra of La@C₈₂ in a)0.1; b)0.5; c)1 mol% in C₇₀ matrix; d)0.1; e)0.5; f)1 mol% in C₇₈ matrix; g)0.1; h)0.5; i)1 mol% in C₈₄ matrix at room temperature. Microwave frequency and modulation amplitude are 9.867 GHz and 0.025 mT, respectively.