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Transformation of polarizability derivatives and treatment of redundancies
Ring containing systems, such as those here investigated, are known to possess set of redundant 
internal  coordinates.  In  particular,  for  Polycyclic  Aromatic  Hydrocarbons  and  graphite,  CC 
stretchings and in-plane angle deformations (bendings) appear mixed in redundancies [Mapelli]. 
For this reason, transformations of molecular properties between cartesian and internal coordinates 
systems require some care. In the following sections we describe the procedures we have followed 
for dealing with polarizability derivatives obtained with the Hückel approach and DFT calculations. 
It is worth recalling that polarizability derivatives are naturally obtained with respect to cartesian 
nuclear displacements in DFT calculations and with respect to CC stretching coordinates in the 
Hückel model.
Procedure (1) has been used to calculate Raman intensities from polarizability derivatives obtained 
with the Hückel model and normal  modes obtained from DFT dynamics expressed in cartesian 
coordinates. Procedure (2) has been used to transform DFT polarizability derivatives from cartesian 
nuclear displacements to valence internal coordinates.

(1) Within the Hückel-based approach to the calculation of polarizability derivatives, redundancies 
are simply avoided because one considers just the (non redundant) set of CC stretching coordinates 
(polarizability derivatives along non CC stretching internal coordinates have been neglected in this 
model).  Since  vibrational  dynamics  is  available  from  DFT in  cartesian  coordinates,  to  obtain 
Hückel-based Raman intensities it is necessary to convert the polarizability derivatives along CC 
stretching coordinates (R) into polarizability derivatives along cartesian coordinates (x) by using 
Wilson's B matrix [Wilson]. 
We recall  that the  B matrix establishes the linear transformation between internal and cartesian 
coordinates (in the following, the sum over repeated indexes is implied):

Ri=Bik x k [1]

Based on Eq. [1], one can write, for the polarizability derivatives (α stands for a generic component 
of the polarizability tensor):
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Eq.  [2] allows to  easily compute  polarizability derivatives along cartesian coordinates  once are 
known the polarizability derivatives along internal coordinates (in our case just CC stretchings).
By numerically solving the vibrational dynamics in cartesian coordinates (being known the force 
field from DFT calculations) one gets the normal coordinates (Q), and nuclear displacements (L) 
which are related to the cartesian displacements (x) according to [Wilson]:

xi=Lik Qk [3]

This linear  relationship allows to quickly obtain the polarizability derivatives along the normal 
coordinates:
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From the polarizability derivatives along normal coordinates given by Eq. [4], Raman intensities 
can be obtained straightforwardly [Wilson].
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(2) Redundancies  have  to  be  considered  when  comparing  DFT polarizability  derivatives  with 
polarizability derivatives obtained with the Hückel method (data reported in Figure 3). The required 
transformation of DFT polarizability derivatives along cartesian nuclear displacements coordinates 
into polarizability derivatives along CC stretching coordinates is carried out by using a full set of 
redundant  in-plane  internal  coordinates  (i.e.  all  CC and CH stretchings,  all  in-plane  bendings) 
defined according to [Wilson]. This is necessary because one has to invert Eq. [2] which requires to 
compute the inverse of the rectangular B matrix (i.e. the A matrix [Wilson]). The A matrix can be 
obtained if the set of internal coordinates correctly span the vibrational space (in particular, at least 
the subspace of in-plane vibrations for the planar molecules here considered). The set of only CC 
stretching coordinates is not enough for this task, unless in-plane bendings are added.
The  A matrix is computed through the inverse of the  G matrix [Wilson], which in presence of 
redundancies  is  singular  (the  zero-valued  eigenvalues  of  G are  associated  to  redundancies 
[Gussoni]). Therefore, the inversion of G has to be carried out carefully, by working in the subspace 
spanned by the eigenvectors associated to the non-zero eigenvalues of G, as described in [Gussoni]. 
In  this  way  redundancies  are  projected  out  and  polarizability  derivatives  along  CC  stretching 
coordinates can be obtained from cartesian derivatives computed with DFT methods. The procedure 
just described has been followed to obtain the data reported in Figure 3.
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