Supporting information for: Effects of the first hydration sphere and the bulk solvent on the spectra of the f^2 isoelectronic actinide compounds: $U^{4+},\,NpO_2^+,\,\text{and}\,PuO_2^{2+}$

Cécile Danilo,[†] Jean-Pierre Flament,[†] Valérie Vallet,^{*,†} and Ulf Wahlgren[‡]

Université des Sciences et Technologies de Lille 1, Laboratoire PhLAM, CNRS UMR 8523, CERLA, CNRS FR 2416, Bât P5, 59655 Villeneuve d'Ascq Cedex, France, and Department of Physics, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden and NORDITA, AlbaNova University Centre, 106 91 Stockholm, Sweden

E-mail: valerie.vallet@univ-lille1.fr

^{*}To whom correspondence should be addressed

[†]Université des Sciences et Technologies de Lille 1, Laboratoire PhLAM, CNRS UMR 8523, CERLA, CNRS FR 2416, Bât P5, 59655 Villeneuve d'Ascq Cedex, France

[‡]Department of Physics, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden and NORDITA, AlbaNova University Centre, 106 91 Stockholm, Sweden

List of Tables

1	Bond distances in Angstroms of hydrated $[U(H_2O)_8]^{4+}$, $[NpO_2(H_2O)_5]^+$, and
	$[PuO_2(H_2O)_5]^{2+}$ complexes
2	Cartesian coordinates of $[U(H_2O)_8]^{4+}$ in Angstroms
3	Cartesian coordinates of $[NpO_2(H_2O)_5]^+$ in Angstroms.
4	Cartesian coordinates of $[PuO_2(H_2O)_5]^{2+}$ in Angstroms
5	Spectrum of $[U(H_2O)_8]^{4+}$ in gas-phase computed at the SO-CASPT2 level.
	Energies are in cm^{-1}
6	Absorption spectrum of $[U(H_2O)_8]^{4+}$ in PCM computed at the SO-CASPT2
	level (PCM equilibrated on the ground-state). Energies are in cm^{-1} S-11
7	Emission spectrum of $[U(H_2O)_8]^{4+}$ in PCM computed at the SO-CASPT2 level
	(PCM equilibrated on the highest singlet state). Energies are in cm^{-1} S-15

Supplementary Material for PCCP This journal is © The Owner Societies 2009

Tables

Table 1: Bond distances in Angstroms of hydrated $[U(H_2O)_8]^{4+}$, $[NpO_2(H_2O)_5]^+$, and $[PuO_2(H_2O)_5]^{2+}$ complexes.

- r		
Complex	$R(An-O_{yl})$	$R(An-OH_2)$
$[U(H_2O)_8]^{4+}$		2.475
$[NpO_2(H_2O)_5]^+$	1.790	2.590
$[PuO_2(H_2O)_5]^{2+}$	1.719	2.490 ± 0.005

Atom	X	У	Z
U	0.000000	0.000000	0.000000
0	0.000000	2.003970	1.452183
0	0.000000	-2.003970	-1.452183
0	-2.003970	0.000000	1.452183
0	2.003970	0.000000	-1.452183
0	0.000000	-2.003970	1.452183
0	0.000000	2.003970	-1.452183
0	2.003970	0.000000	1.452183
0	-2.003970	0.000000	-1.452183
Н	-0.762458	2.515692	1.787052
Н	0.762458	-2.515692	-1.787052
Н	0.762458	2.515692	1.787052
Н	-0.762458	-2.515692	-1.787052
Н	-2.515692	-0.762458	1.787052
Н	2.515692	0.762458	-1.787052
Н	-2.515692	0.762458	1.787052
Η	2.515692	-0.762458	-1.787052
Н	0.762458	-2.515692	1.787052
Н	-0.762458	2.515692	-1.787052
Н	-0.762458	-2.515692	1.787052
Н	0.762458	2.515692	-1.787052
Н	2.515692	0.762458	1.787052
Н	-2.515692	-0.762458	-1.787052
Н	2.515692	-0.762458	1.787052
Н	-2.515692	0.762458	-1.787052

Table 2: Cartesian coordinates of $[U(H_2O)_8]^{4+}$ in Angstroms.

Atom	Х	У	Z
Np	0.000000	0.000000	0.000000
0	0.000000	0.000000	1.789671
0	0.000000	0.000000	-1.789727
0	-2.462823	-0.800220	-0.000558
0	0.000000	-2.589565	-0.000558
0	-1.522109	2.095002	-0.000558
0	1.522108	2.095003	-0.000558
0	2.462823	-0.800219	-0.000558
Н	-3.094226	-0.690458	-0.720272
Н	-2.911034	-1.258452	0.719042
Н	-0.299504	-3.156147	-0.720272
Н	0.297300	-3.157441	0.719042
Н	-1.612833	2.729421	-0.720272
Н	-2.096418	2.379675	0.719042
Н	2.909122	-1.260148	-0.720272
Н	3.094775	-0.692954	0.719042
Н	2.097440	2.377333	-0.720272
Н	1.615376	2.729172	0.719042

Table 3: Cartesian coordinates of $[NpO_2(H_2O)_5]^+$ in Angstroms.

Atom	X	У	Z
Pu	0.000000	0.000000	0.000000
0	0.000000	0.000000	-1.719712
0	-0.000957	0.003909	1.719066
0	1.438517	2.029018	0.004841
0	2.379105	-0.738238	-0.006265
0	-1.561727	1.938500	-0.004294
0	-2.309734	-0.924121	-0.004562
0	0.108563	-2.492715	-0.003283
Н	1.492156	2.699449	0.702664
Н	2.069504	2.289159	-0.683324
Н	3.049829	-0.537295	0.663080
Н	2.802650	-1.298773	-0.673232
Н	-2.192985	2.169668	0.694006
Н	-1.664317	2.601316	-0.704116
Н	0.550419	-3.049073	0.654854
Н	-0.276886	-3.086036	-0.664704
Н	-2.692455	-1.507515	0.667668
Н	-2.987847	-0.792107	-0.683952

Table 4: Cartesian coordinates of $[PuO_2(H_2O)_5]^{2+}$ in Angstroms.

Table 5: Spectrum of $[U(H_2O)_8]^{4+}$ in gas-phase computed at the SO-CASPT2 level. Energies are in $\mbox{cm}^{-1}.$

Energy	Contributions of U ⁴⁺ SO states
0	46% ³ <i>H</i> ₄
210	46% ³ <i>H</i> ₄
309	$44\% {}^{3}H_{4}$
316	$44\% {}^{3}H_{4}$
1277	43% ³ H ₄
1345	$44\% {}^{3}H_{4}$
1464	45% ³ H ₄
5114	$33\% {}^{3}F_{2} + 13\% {}^{3}H_{5}$
5286	$20\% {}^{3}F_{2} + 29\% {}^{3}H_{5}$
5325	$9\% {}^{3}H_{5} + 37\% {}^{3}F_{2}$
5428	$30\% {}^{3}F_{2} + 16\% {}^{3}H_{5}$
6495	52% ³ H ₅
6678	45% ³ H ₅
6804	$14\% {}^{3}F_{2} + 35\% {}^{3}H_{5}$
6808	45% ³ H ₅
7073	49% ³ H ₅
7452	$21\% {}^{3}H_{5} + 23\% {}^{3}F_{2}$
7679	37% ³ H ₅
7909	45% ³ H ₅
9846	$45\% {}^{3}F_{3}$
9942	$30\% {}^{3}F_{3} + 17\% {}^{3}H_{6}$
10017	$12\% {}^{3}H_{6} + 35\% {}^{3}F_{3}$
10734	35% ³ <i>F</i> ₃
10747	$11\% {}^{3}H_{6} + 15\% {}^{3}F_{4} + 15\% {}^{1}G_{4}$
11092	$30\% {}^{3}F_{3} + 10\% {}^{3}H_{6}$

Table 5: continue

Energy	Contributions of U ⁴⁺ SO states
11240	$8\% {}^{3}F_{3} + 9\% {}^{1}G_{4} + 9\% {}^{3}F_{4} + 23\% {}^{3}H_{6}$
11301	$13\% {}^{3}F_{4} + 9\% {}^{3}F_{3} + 13\% {}^{1}G_{4} + 13\% {}^{3}H_{6}$
11625	$14\% {}^{3}F_{4} + 14\% {}^{1}G_{4} + 19\% {}^{3}H_{6}$
11787	$11\% {}^{1}G_{4} + 22\% {}^{3}H_{6} + 11\% {}^{3}F_{4}$
11955	$16\% {}^{3}H_{6} + 16\% {}^{3}F_{3} + 9\% {}^{3}F_{4} + 9\% {}^{1}G_{4}$
12047	$15\% {}^{3}F_{4} + 15\% {}^{1}G_{4} + 18\% {}^{3}H_{6}$
12310	$11\% {}^{3}F_{4} + 23\% {}^{3}H_{6} + 11\% {}^{1}G_{4}$
12454	$36\% {}^{3}H_{6} + 9\% {}^{3}F_{3}$
12501	32% ³ H ₆
13042	$26\% {}^{3}H_{6} + 10\% {}^{3}F_{4} + 10\% {}^{1}G_{4}$
13130	31% ³ <i>H</i> ₆
13626	$10\% {}^{3}F_{4} + 10\% {}^{1}G_{4} + 26\% {}^{3}H_{6}$
13717	34% ³ <i>H</i> ₆
14038	39% ³ <i>H</i> ₆
14625	37% ³ <i>H</i> ₆
15237	38% ³ H ₆
18727	$21\% {}^{3}F_{4} + 17\% {}^{1}G_{4}$
18935	$11\% {}^{1}D_{2} + 17\% {}^{3}F_{4} + 14\% {}^{1}G_{4}$
19331	$44\% {}^{3}P_{0}$
19411	$17\% {}^{3}F_{4} + 13\% {}^{1}G_{4} + 13\% {}^{1}D_{2}$
19632	$22\% {}^{3}F_{4} + 18\% {}^{1}G_{4}$
19884	$14\% {}^{1}G_{4} + 11\% {}^{1}D_{2} + 17\% {}^{3}F_{4}$
19891	$26\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$
20117	$10\% {}^{3}P_{2} + 21\% {}^{1}D_{2}$
20322	$16\% {}^{1}G_{4} + 19\% {}^{3}F_{4}$
20431	$9\% {}^{3}P_{2} + 18\% {}^{1}D_{2} + 9\% {}^{1}G_{4} + 11\% {}^{3}F_{4}$

Table 5: continue

Energy	Contributions of U ⁴⁺ SO states
20799	$22\% {}^{1}D_{2} + 11\% {}^{3}P_{2}$
21155	$19\% {}^{1}G_{4} + 23\% {}^{3}F_{4}$
22265	$50\% {}^{3}P_{1}$
22632	$51\% {}^{3}P_{1}$
26586	43% ¹ <i>I</i> ₆
26623	$48\% \ ^{1}I_{6}$
26642	$20\% {}^{3}P_{2} + 23\% {}^{1}I_{6}$
27353	$28\% {}^{3}P_{2} + 11\% {}^{1}D_{2} + 12\% {}^{1}I_{6}$
27638	$46\% \ ^{1}I_{6}$
27828	$50\% \ ^{1}I_{6}$
28012	$11\% {}^{1}D_{2} + 29\% {}^{3}P_{2} + 12\% {}^{1}I_{6}$
28143	$38\% {}^{1}I_{6} + 9\% {}^{3}P_{2}$
28401	$22\% {}^{1}I_{6} + 21\% {}^{3}P_{2} + 8\% {}^{1}D_{2}$
29409	$50\% \ ^{1}I_{6}$
29589	43% ¹ <i>I</i> ₆
30731	$46\% \ ^{1}I_{6}$
31217	$12\% {}^{3}P_{2} + 30\% {}^{1}I_{6}$
32342	$30\% {}^{1}I_{6} + 12\% {}^{3}P_{2}$
48323	$48\% {}^{1}S_{0}$

Table 6: Absorption spectrum of $[U(H_2O)_8]^{4+}$ in PCM computed at the SO-CASPT2 level (PCM equilibrated on the ground-state). Energies are in cm⁻¹.

Energy	Contributions of U ⁴⁺ SO states
0	$47\% {}^{3}H_{4}$
150	47% ³ H ₄
157	$47\% {}^{3}H_{4}$
468	$45\% {}^{3}H_{4}$
504	45% ³ H ₄
1288	$44\% {}^{3}H_{4}$
1301	45% ³ H ₄
1311	$45\% {}^{3}H_{4}$
1446	$46\% {}^{3}H_{4}$
5174	$12\% {}^{3}H_{5} + 35\% {}^{3}F_{2}$
5184	$11\% {}^{3}H_{5} + 35\% {}^{3}F_{2}$
5350	$29\% {}^{3}H_{5} + 21\% {}^{3}F_{2}$
5389	$37\% {}^{3}F_{2} + 9\% {}^{3}H_{5}$
5442	$16\% {}^{3}H_{5} + 31\% {}^{3}F_{2}$
6377	53% ³ H ₅
6688	50% ³ H ₅
6703	50% ³ H ₅
6818	45% ³ H ₅
6826	45% ³ H ₅
6920	$13\% {}^{3}F_{2} + 36\% {}^{3}H_{5}$
7112	49% ³ H ₅
7413	$23\% {}^{3}F_{2} + 23\% {}^{3}H_{5}$
7732	38% ³ H ₅
7788	45% ³ H ₅
7797	45% ³ H ₅

Table 6: continue

Energy	Contributions of U ⁴⁺ SO states
9848	45% ³ <i>F</i> ₃
9853	$45\% {}^{3}F_{3}$
9919	$35\% {}^{3}F_{3} + 13\% {}^{3}H_{6}$
10168	$38\% {}^{3}F_{3} + 11\% {}^{3}H_{6}$
10787	$40\% {}^{3}F_{3}$
10900	$13\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$
11159	$33\% {}^{3}F_{3} + 12\% {}^{3}H_{6}$
11163	$12\% {}^{3}H_{6} + 33\% {}^{3}F_{3}$
11317	$23\% {}^{3}H_{6} + 10\% {}^{1}G_{4} + 10\% {}^{3}F_{4}$
11321	$11\% {}^{3}H_{6} + 15\% {}^{3}F_{4} + 15\% {}^{1}G_{4}$
11326	$11\% {}^{3}H_{6} + 15\% {}^{3}F_{4} + 15\% {}^{1}G_{4}$
11748	$14\% {}^{3}F_{4} + 14\% {}^{1}G_{4} + 20\% {}^{3}H_{6}$
11852	$11\% {}^{3}F_{4} + 11\% {}^{1}G_{4} + 25\% {}^{3}H_{6}$
11872	$10\% {}^{1}G_{4} + 26\% {}^{3}H_{6} + 10\% {}^{3}F_{4}$
11899	$11\% {}^{1}G_{4} + 11\% {}^{3}F_{4} + 16\% {}^{3}H_{6} + 12\% {}^{3}F_{3}$
12081	$23\% {}^{3}H_{6} + 13\% {}^{1}G_{4} + 13\% {}^{3}F_{4}$
12337	33% ³ H ₆
12346	$24\% {}^{3}H_{6} + 10\% {}^{1}G_{4} + 10\% {}^{3}F_{4}$
12363	32% ³ H ₆
12371	$31\% {}^{3}H_{6}$
12994	$10\% {}^{3}F_{4} + 10\% {}^{1}G_{4} + 26\% {}^{3}H_{6}$
13116	29% ³ H ₆
13137	28% ³ H ₆
13676	$27\% {}^{3}H_{6} + 11\% {}^{1}G_{4} + 11\% {}^{3}F_{4}$
13833	36% ³ <i>H</i> ₆
14013	38% ³ H ₆

Table 6: continue

Energy	Contributions of U ⁴⁺ SO states
14544	38% ³ H ₆
14546	38% ³ H ₆
15146	$8\% {}^{3}F_{3} + 40\% {}^{3}H_{6}$
18903	$21\% {}^{3}F_{4} + 17\% {}^{1}G_{4}$
19039	$18\% {}^{3}F_{4} + 15\% {}^{1}G_{4} + 10\% {}^{1}D_{2}$
19042	$10\% {}^{1}D_{2} + 15\% {}^{1}G_{4} + 18\% {}^{3}F_{4}$
19381	$18\% {}^{3}F_{4} + 15\% {}^{1}G_{4} + 11\% {}^{1}D_{2}$
19399	45% ³ P ₀
19647	$21\% {}^{3}F_{4} + 17\% {}^{1}G_{4}$
19946	$27\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$
20080	$15\% {}^{3}F_{4} + 12\% {}^{1}D_{2} + 13\% {}^{1}G_{4}$
20109	$14\% {}^{1}D_{2} + 11\% {}^{1}G_{4} + 14\% {}^{3}F_{4}$
20212	$22\% {}^{1}D_{2} + 11\% {}^{3}P_{2}$
20372	$10\% {}^{3}F_{4} + 20\% {}^{1}D_{2} + 10\% {}^{3}P_{2}$
20458	$16\% {}^{1}G_{4} + 20\% {}^{3}F_{4}$
20512	$22\% {}^{3}F_{4} + 18\% {}^{1}G_{4}$
20749	$10\% {}^{3}P_{2} + 22\% {}^{1}D_{2}$
21286	$24\% {}^{3}F_{4} + 20\% {}^{1}G_{4}$
22317	$51\% {}^{3}P_{1}$
22329	$51\% {}^{3}P_{1}$
22630	$52\% {}^{3}P_{1}$
26828	$20\% {}^{3}P_{2} + 24\% {}^{1}I_{6}$
26838	$20\% {}^{3}P_{2} + 24\% {}^{1}I_{6}$
27057	$10\% {}^{3}P_{2} + 38\% {}^{1}I_{6}$
27070	$47\% {}^{1}I_{6}$
27424	$16\% {}^{1}I_{6} + 26\% {}^{3}P_{2} + 10\% {}^{1}D_{2}$

Table 6: continue

Energy	Contributions of U ⁴⁺ SO states
27654	$50\% \ ^{1}I_{6}$
27708	$51\% I_{6}^{-1}$
27733	$51\% I_{6}^{-1}$
28091	$27\% {}^{3}P_{2} + 10\% {}^{1}D_{2} + 15\% {}^{1}I_{6}$
28223	$12\% {}^{3}P_{2} + 35\% {}^{1}I_{6}$
28265	$24\% {}^{1}I_{6} + 20\% {}^{3}P_{2}$
29337	$50\% {}^{1}I_{6}$
29608	$48\% \ ^{1}I_{6}$
29659	$47\% {}^{1}I_{6}$
30776	$47\% {}^{1}I_{6}$
31069	$15\% {}^{3}P_{2} + 27\% {}^{1}I_{6}$
31111	$14\% {}^{3}P_{2} + 28\% {}^{1}I_{6}$
32195	$12\% {}^{3}P_{2} + 31\% {}^{1}I_{6}$
48357	$49\% {}^{1}S_{0}$

_

Table 7: Emission spectrum of $[U(H_2O)_8]^{4+}$ in PCM computed at the SO-CASPT2 level	
(PCM equilibrated on the highest singlet state). Energies are in cm $^{-1}$.	

Transition energy from the ground state	Emission ¹ from ${}^{1}S_{0}$	Contributions of U ⁴⁺ SO states
0	37362	$47\% {}^{3}H_{4}$
104	37257	47% ³ <i>H</i> ₄
106	37362	$47\% {}^{3}H_{4}$
424	36938	45% ³ H ₄
539	36938	45% ³ <i>H</i> ₄
1078	36284	45% ³ H ₄
1154	36208	$45\% {}^{3}H_{4}$
1166	36196	$45\% {}^{3}H_{4}$
1259	36103	$46\% {}^{3}H_{4}$
4923	32439	$39\% {}^{3}F_{2}$
4928	32434	$38\% {}^3F_2$
5093	32269	$23\% {}^{3}H_{5} + 26\% {}^{3}F_{2}$
5143	32269	$40\% {}^{3}F_{2}$
5194	32168	$37\% {}^{3}F_{2} + 10\% {}^{3}H_{5}$
6476	30886	52% ³ H ₅
6808	30554	43% ³ H ₅
6850	30512	50% ³ H ₅
6858	30504	$49\% {}^{3}H_{5}$
6910	30452	43% ³ <i>H</i> ₅
6911	30451	$47\% {}^{3}H_{5}$
6958	30451	$15\% {}^{3}F_{2} + 32\% {}^{3}H_{5}$
7008	30354	$49\% {}^{3}H_{5}$
7725	29637	42% ³ H ₅
7899	29463	46% ³ <i>H</i> ₅

790129461 $46\%^3 H_5$ 956927793 $34\%^3 F_3$ 957327788 $35\%^3 F_3$ 975027788 $36\%^3 F_3 + 8\%^3 H_6$ 1003627611 $10\%^3 H_6 + 25\%^3 F_3$ 1007027291 $17\%^1 G_4 + 17\%^3 F_4 + 11\%^3 F_3$ 1007827284 $17\%^1 G_4 + 18\%^3 F_4$ 1013327229 $9\%^3 H_6 + 18\%^1 G_4 + 18\%^3 F_4$ 1026227099 $14\%^1 G_4 + 15\%^3 F_3 + 14\%^3 F_4$ 1057426788 $22\%^3 F_4 + 22\%^1 G_4$ 1077526587 $10\%^1 G_4 + 10\%^3 F_4 + 19\%^3 F_3 + 10\%^3 F_4$ 108326279 $22\%^1 G_4 + 22\%^3 F_4$ 118326178 $8\%^3 F_4 + 34\%^3 F_3$ 1120426157 $37\%^3 F_3$ 1207025292 $48\%^3 H_6$ 121825244 $42\%^3 H_6$ 121725211 $43\%^3 H_6$ 1245724904 $44\%^3 H_6$ 125824534 $38\%^3 H_6$	Transition energy from the ground state	Emission ¹ from ${}^{1}S_{0}$	Contributions of U ⁴⁺ SO states
956927793 $34\% {}^3F_3$ 957327788 $35\% {}^3F_3$ 975027788 $36\% {}^3F_3 + 8\% {}^3H_6$ 1003627611 $10\% {}^3H_6 + 25\% {}^3F_3$ 1007027291 $17\% {}^1G_4 + 17\% {}^3F_4 + 11\% {}^3F_3$ 1007827284 $17\% {}^1G_4 + 11\% {}^3F_3 + 17\% {}^3F_4$ 1013327229 $9\% {}^3H_6 + 18\% {}^1G_4 + 18\% {}^3F_4$ 1026227099 $14\% {}^1G_4 + 15\% {}^3F_3 + 14\% {}^3F_4$ 1037426788 $22\% {}^3F_4 + 22\% {}^1G_4$ 1077526587 $10\% {}^1G_4 + 10\% {}^3F_4 + 19\% {}^3F_3 + 10\% {}^3F_4$ 1085526507 $9\% {}^3H_6 + 16\% {}^3F_4 + 16\% {}^1G_4$ 118326178 $8\% {}^3F_4 + 34\% {}^3F_3$ 1120426157 $37\% {}^3F_3$ 1207025292 $48\% {}^3H_6$ 1213725225 $46\% {}^3H_6$ 1213725225 $46\% {}^3H_6$ 121512511 $43\% {}^3H_6$ 1245224534 $3\% {}^3H_6$	7901	29461	46% ³ <i>H</i> ₅
957327788 $35\% {}^3F_3$ 975027788 $36\% {}^3F_3 + 8\% {}^3H_6$ 1003627611 $10\% {}^3H_6 + 25\% {}^3F_3$ 1007027291 $17\% {}^1G_4 + 17\% {}^3F_4 + 11\% {}^3F_3$ 1007827284 $17\% {}^1G_4 + 11\% {}^3F_3 + 17\% {}^3F_4$ 1013327229 $9\% {}^3H_6 + 18\% {}^1G_4 + 18\% {}^3F_4$ 1026227099 $14\% {}^1G_4 + 15\% {}^3F_3 + 14\% {}^3F_4$ 1057426788 $22\% {}^3F_4 + 22\% {}^1G_4$ 1077526587 $10\% {}^1G_4 + 10\% {}^3F_4 + 19\% {}^3F_3 + 10\% {}^3F_4$ 1085526507 $9\% {}^3H_6 + 16\% {}^3F_4 + 16\% {}^1G_4$ 1108326279 $22\% {}^1G_4 + 22\% {}^3F_4$ 1118326178 $8\% {}^3F_4 + 34\% {}^3F_3$ 1120426157 $37\% {}^3F_3$ 12152544 $42\% {}^3H_6$ 121825244 $42\% {}^3H_6$ 121372525 $46\% {}^3H_6$ 121512511 $43\% {}^3H_6$ 1245724904 $44\% {}^3H_6$ 1245124534 $38\% {}^3H_6$	9569	27793	34% ³ <i>F</i> ₃
975027788 $36\% {}^{3}F_{3} + 8\% {}^{3}H_{6}$ 1003627611 $10\% {}^{3}H_{6} + 25\% {}^{3}F_{3}$ 1007027291 $17\% {}^{1}G_{4} + 17\% {}^{3}F_{4} + 11\% {}^{3}F_{3}$ 1007827284 $17\% {}^{1}G_{4} + 11\% {}^{3}F_{3} + 17\% {}^{3}F_{4}$ 1013327229 $9\% {}^{3}H_{6} + 18\% {}^{1}G_{4} + 18\% {}^{3}F_{4}$ 1026227099 $14\% {}^{1}G_{4} + 15\% {}^{3}F_{5} + 14\% {}^{3}F_{4}$ 1057426788 $22\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$ 1078926573 $10\% {}^{6}G_{4} + 10\% {}^{3}F_{4} + 10\% {}^{3}F_{3} + 10\% {}^{3}F_{4}$ 1083526507 $9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$ 118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1213725254 $46\% {}^{3}H_{6}$ 1213725251 $46\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1245124584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$	9573	27788	35% ³ <i>F</i> ₃
1003627611 $10\%^{3}H_{6} + 25\%^{3}F_{3}$ 1007027291 $17\%^{1}G_{4} + 17\%^{3}F_{4} + 11\%^{3}F_{3}$ 1007827284 $17\%^{1}G_{4} + 11\%^{3}F_{3} + 17\%^{3}F_{4}$ 1013327229 $9\%^{3}H_{6} + 18\%^{1}G_{4} + 18\%^{3}F_{4}$ 1026227099 $14\%^{1}G_{4} + 15\%^{3}F_{3} + 14\%^{3}F_{4}$ 1057426788 $22\%^{3}F_{4} + 22\%^{1}G_{4}$ 1077526587 $10\%^{1}G_{4} + 10\%^{3}F_{4} + 19\%^{3}F_{3} + 10\%^{3}F_{4}$ 1078926573 $17\%^{3}F_{4} + 17\%^{1}G_{4} + 8\%^{3}H_{6}$ 1085526507 $9\%^{3}H_{6} + 16\%^{3}F_{4} + 16\%^{1}G_{4}$ 1108326279 $22\%^{1}G_{4} + 22\%^{3}F_{4}$ 1118326178 $8\%^{3}F_{4} + 34\%^{3}F_{3}$ 120426157 $37\%^{3}F_{3}$ 120525292 $48\%^{3}H_{6}$ 1211825244 $42\%^{3}H_{6}$ 1213725225 $46\%^{3}H_{6}$ 121512511 $43\%^{3}H_{6}$ 1245724904 $44\%^{3}H_{6}$ 1245124534 $38\%^{3}H_{6}$	9750	27788	$36\% {}^{3}F_{3} + 8\% {}^{3}H_{6}$
1007027291 $17\%^{1}G_{4} + 17\%^{3}F_{4} + 11\%^{3}F_{3}$ 1007827284 $17\%^{1}G_{4} + 11\%^{3}F_{3} + 17\%^{3}F_{4}$ 1013327229 $9\%^{3}H_{6} + 18\%^{1}G_{4} + 18\%^{3}F_{4}$ 1026227099 $14\%^{1}G_{4} + 15\%^{3}F_{3} + 14\%^{3}F_{4}$ 1057426788 $22\%^{3}F_{4} + 22\%^{1}G_{4}$ 1077526587 $10\%^{1}G_{4} + 10\%^{3}F_{4} + 19\%^{3}F_{3} + 10\%^{3}F_{4}$ 1078926573 $17\%^{3}F_{4} + 17\%^{1}G_{4} + 8\%^{3}H_{6}$ 1085526507 $9\%^{3}H_{6} + 16\%^{3}F_{4} + 16\%^{1}G_{4}$ 1108326279 $22\%^{1}G_{4} + 22\%^{3}F_{4}$ 1118326178 $8\%^{3}F_{4} + 34\%^{3}F_{3}$ 120426157 $37\%^{3}F_{3}$ 121526147 $37\%^{3}F_{3}$ 1217025292 $48\%^{3}H_{6}$ 1213725225 $46\%^{3}H_{6}$ 1213725211 $43\%^{3}H_{6}$ 1245724904 $44\%^{3}H_{6}$ 127824584 $37\%^{3}H_{6}$ 1282824534 $38\%^{3}H_{6}$	10036	27611	$10\% {}^{3}H_{6} + 25\% {}^{3}F_{3}$
1007827284 $17\% {}^{1}G_{4} + 11\% {}^{3}F_{3} + 17\% {}^{3}F_{4}$ 1013327229 $9\% {}^{3}H_{6} + 18\% {}^{1}G_{4} + 18\% {}^{3}F_{4}$ 1026227099 $14\% {}^{1}G_{4} + 15\% {}^{3}F_{3} + 14\% {}^{3}F_{4}$ 1057426788 $22\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$ 1077526587 $10\% {}^{1}G_{4} + 10\% {}^{3}F_{4} + 19\% {}^{3}F_{3} + 10\% {}^{3}E_{4}$ 1078926573 $17\% {}^{3}F_{4} + 17\% {}^{1}G_{4} + 8\% {}^{3}H_{6}$ 1085526507 $9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$ 1108326279 $22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$ 1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 120426157 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 121825244 $42\% {}^{3}H_{6}$ 12172525 $46\% {}^{3}H_{6}$ 121824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	10070	27291	$17\% {}^{1}G_{4} + 17\% {}^{3}F_{4} + 11\% {}^{3}F_{3}$
1013327229 $9\%^3H_6 + 18\%^1G_4 + 18\%^3F_4$ 1026227099 $14\%^1G_4 + 15\%^3F_3 + 14\%^3F_4$ 1057426788 $22\%^3F_4 + 22\%^1G_4$ 1077526587 $10\%^1G_4 + 10\%^3F_4 + 19\%^3F_3 + 10\%^3F_4$ 1078926573 $17\%^3F_4 + 17\%^1G_4 + 8\%^3H_6$ 1085526507 $9\%^3H_6 + 16\%^3F_4 + 16\%^1G_4$ 1108326279 $22\%^1G_4 + 22\%^3F_4$ 1118326178 $8\%^3F_4 + 34\%^3F_3$ 1120426157 $37\%^3F_3$ 1207025292 $48\%^3H_6$ 1211825244 $42\%^3H_6$ 1215125211 $43\%^3H_6$ 1245724904 $44\%^3H_6$ 1277824584 $37\%^3H_6$ 1282824534 $38\%^3H_6$	10078	27284	$17\% {}^{1}G_{4} + 11\% {}^{3}F_{3} + 17\% {}^{3}F_{4}$
1026227099 $14\% {}^{1}G_{4} + 15\% {}^{3}F_{3} + 14\% {}^{3}F_{4}$ 1057426788 $22\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$ 1077526587 $10\% {}^{1}G_{4} + 10\% {}^{3}F_{4} + 19\% {}^{3}F_{3} + 10\% {}^{3}F_{4}$ 1078926573 $17\% {}^{3}F_{4} + 17\% {}^{1}G_{4} + 8\% {}^{3}H_{6}$ 1085526507 $9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$ 1108326279 $22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$ 1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$	10133	27229	$9\% {}^{3}H_{6} + 18\% {}^{1}G_{4} + 18\% {}^{3}F_{4}$
1057426788 $22\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$ 1077526587 $10\% {}^{1}G_{4} + 10\% {}^{3}F_{4} + 19\% {}^{3}F_{3} + 10\% {}^{3}F_{4}$ 1078926573 $17\% {}^{3}F_{4} + 17\% {}^{1}G_{4} + 8\% {}^{3}H_{6}$ 1085526507 $9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$ 1108326279 $22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$ 1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 1121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 121372525 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	10262	27099	$14\% {}^{1}G_{4} + 15\% {}^{3}F_{3} + 14\% {}^{3}F_{4}$
1077526587 $10\% {}^{1}G_{4} + 10\% {}^{3}F_{4} + 19\% {}^{3}F_{3} + 10\% {}^{3}F_{4}$ 1078926573 $17\% {}^{3}F_{4} + 17\% {}^{1}G_{4} + 8\% {}^{3}H_{6}$ 1085526507 $9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$ 1108326279 $22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$ 1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	10574	26788	$22\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$
1078926573 $17\% {}^{3}F_{4} + 17\% {}^{1}G_{4} + 8\% {}^{3}H_{6}$ 1085526507 $9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$ 1108326279 $22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$ 1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 1121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	10775	26587	$10\% {}^{1}G_{4} + 10\% {}^{3}F_{4} + 19\% {}^{3}F_{3} + 10\% {}^{3}F_{4}$
1085526507 $9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$ 1108326279 $22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$ 1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 1121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1213725225 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	10789	26573	$17\% {}^{3}F_{4} + 17\% {}^{1}G_{4} + 8\% {}^{3}H_{6}$
1108326279 $22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$ 1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 1121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1213725225 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$	10855	26507	$9\% {}^{3}H_{6} + 16\% {}^{3}F_{4} + 16\% {}^{1}G_{4}$
1118326178 $8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$ 1120426157 $37\% {}^{3}F_{3}$ 1121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1213725225 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$	11083	26279	$22\% {}^{1}G_{4} + 22\% {}^{3}F_{4}$
1120426157 $37\% {}^{3}F_{3}$ 1121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1213725255 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	11183	26178	$8\% {}^{3}F_{4} + 34\% {}^{3}F_{3}$
1121526147 $37\% {}^{3}F_{3}$ 1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1213725225 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	11204	26157	37% ³ <i>F</i> ₃
1207025292 $48\% {}^{3}H_{6}$ 1211825244 $42\% {}^{3}H_{6}$ 1213725225 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	11215	26147	37% ³ <i>F</i> ₃
1211825244 $42\% {}^{3}H_{6}$ 1213725225 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	12070	25292	48% ³ H ₆
1213725225 $46\% {}^{3}H_{6}$ 1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	12118	25244	42% ³ H ₆
1215125211 $43\% {}^{3}H_{6}$ 1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	12137	25225	$46\% {}^{3}H_{6}$
1245724904 $44\% {}^{3}H_{6}$ 1277824584 $37\% {}^{3}H_{6}$ 1282824534 $38\% {}^{3}H_{6}$ 1284124521 $38\% {}^{3}H_{6}$	12151	25211	43% ³ <i>H</i> ₆
12778 24584 $37\% {}^{3}H_{6}$ 12828 24534 $38\% {}^{3}H_{6}$ 12841 24521 $38\% {}^{3}H_{6}$	12457	24904	$44\% {}^{3}H_{6}$
12828 24534 $38\% {}^{3}H_{6}$ 12841 24521 $38\% {}^{3}H_{6}$	12778	24584	37% ³ <i>H</i> ₆
12841 24521 38% ³ H ₆	12828	24534	38% ³ H ₆
	12841	24521	38% ³ H ₆

Table 7: continue

Transition energy from the ground state	Emission ¹ from ${}^{1}S_{0}$	Contributions of U ⁴⁺ SO states
13371	23991	42% ³ <i>H</i> ₆
13545	23817	46% ³ <i>H</i> ₆
13886	23476	44% ³ H ₆
13901	23461	44% ³ <i>H</i> ₆
14641	22721	$9\% {}^{3}F_{3} + 42\% {}^{3}H_{6}$
16978	20384	$13\% {}^{3}F_{4} + 11\% {}^{1}G_{4} + 15\% {}^{1}D_{2}$
17069	20293	$13\% {}^{1}D_{2} + 13\% {}^{1}G_{4} + 16\% {}^{3}F_{4}$
17301	20061	$12\% {}^{1}D_{2} + 13\% {}^{1}G_{4} + 16\% {}^{3}F_{4}$
17627	19735	$9\% {}^{3}P_{2} + 19\% {}^{1}D_{2} + 9\% {}^{3}F_{4}$
17684	19678	$15\% {}^{1}G_{4} + 19\% {}^{3}F_{4} + 10\% {}^{1}D_{2}$
17826	19536	$16\% {}^{1}G_{4} + 19\% {}^{3}F_{4}$
17911	19451	$15\% {}^{1}G_{4} + 9\% {}^{1}D_{2} + 18\% {}^{3}F_{4}$
18009	19353	$10\% {}^{1}D_{2} + 11\% {}^{1}G_{4} + 13\% {}^{3}F_{4} + 9\% {}^{3}P_{0}$
18171	19191	$27\% {}^{3}F_{4} + 22\% {}^{1}G_{4}$
18385	18976	$19\% {}^{3}F_{4} + 9\% {}^{1}D_{2} + 15\% {}^{1}G_{4}$
18553	18809	$16\% {}^{3}P_{0} + 12\% {}^{1}D_{2}$
18647	18715	$21\% {}^{3}F_{4} + 17\% {}^{1}G_{4}$
18724	18638	$17\% {}^{1}G_{4} + 21\% {}^{3}F_{4}$
18735	18627	$8\% {}^{3}P_{2} + 9\% {}^{3}F_{4} + 17\% {}^{1}D_{2}$
19304	18058	$15\% {}^{3}P_{0} + 14\% {}^{1}G_{4} + 18\% {}^{3}F_{4}$
21391	15971	$51\% {}^{3}P_{1}$
21488	15874	$50\% {}^{3}P_{1}$
22021	15340	52% ³ <i>P</i> ₁
23831	13531	$49\% \ ^{1}I_{6}$
23892	13469	48% ¹ <i>I</i> ₆

Table 7: continue

Transition energy from the ground state	Emission ¹ from ${}^{1}S_{0}$	Contributions of U ⁴⁺ SO states
24249	13113	$46\% \ ^{1}I_{6}$
24265	13097	49% ¹ <i>I</i> ₆
24326	13036	$51\% I_{6}^{-1}$
24508	12854	$12\% {}^{3}P_{2} + 33\% {}^{1}I_{6}$
24519	12843	46% ¹ <i>I</i> ₆
24688	12674	$13\% {}^{3}P_{2} + 30\% {}^{1}I_{6}$
25468	11894	$27\% {}^{1}I_{6} + 17\% {}^{3}P_{2}$
25802	11560	49% ¹ <i>I</i> ₆
25821	11541	49% ¹ <i>I</i> ₆
25938	11424	$13\% {}^{1}D_{2} + 34\% {}^{3}P_{2}$
25992	11370	49% ¹ <i>I</i> ₆
26419	10943	$35\% {}^{3}P_{2} + 14\% {}^{1}D_{2}$
27434	9928	$47\% {}^{1}I_{6}$
28554	8807	$19\% {}^{1}I_{6} + 21\% {}^{3}P_{2} + 8\% {}^{1}D_{2}$
28689	8673	$23\% {}^{3}P_{2} + 9\% {}^{1}D_{2} + 17\% {}^{1}I_{6}$
29320	8042	$22\% {}^{1}I_{6} + 19\% {}^{3}P_{2}$
45048	0	48% ¹ S ₀

Table 7: continue