Table S1. ${}^{3}O_{2}$ adsorption energies (in kJ mol⁻¹) in H12T:48T using different basis sets. The total adsorption energy (E_{ads}) has been decomposed in two terms: the interaction energy (E_{int}) and dispersion (D)

	$E_{\rm ads}{}^{\rm b}$	$E_{\rm INT}^{\rm b}$	D ^b
³ O ₂ -H12T:48T/BSA ^a	-16.7	+1.3	-18.0
³ O ₂ -H12T:48T/BSA-D ^a	-18.3	+1.5	-19.8
³ O ₂ -H12T:48T/BSB ^a	-14.8	+0.8	-15.6
³ O ₂ -H12T:48T/BSC ^a	-14.8	+0.4	-15.2

^a See computational details section for model description.

^b See equation 1 to 3 and computational details section for partitioning scheme definition.

structures. Distances in Å.

Figure S3. Local view of η^1 -O₂-CuCHA optimized ³ structures. Distances in Å.

Figure S4. Local view of the optimized ${}^{1}\Delta_{g}$ and ${}^{1}\Sigma_{g}^{+}$ O₂-MCHA adsorbed structures (M= H⁺, Na⁺ or Cu⁺). Distances in Å.