Electronic Supplementary Information

Electron Transport Properties in Fluorinated Copper-Phthalocyanine Films: Importance of Vibrational Reorganization Energy and Molecular Microstructure

Fu-Chiao Wu,^a Horng-Long Cheng,^{*a} Chen-Hsiang Yen,^a Jyu-Wun Lin,^a Shyh-Jiun Liu,^b Wei-Yang Chou^a and Fu-Ching Tang^c

^a Institute of Electro-Optical Science and Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan, R.O.C. E-mail: <u>shlcheng@mail.ncku.edu.tw</u>; Fax: +886 6 2095040; Tel: +886 6 2757575 65286
^b Department of Material Science, National University of Tainan, Tainan 700, Taiwan, R.O.C.
^c Department of Physics, National Cheng Kung University

Tainan 701, Taiwan, R.O.C.

1. Calculated Vibrational Reorganization Energy of $F_{16}H_2Pc$

Table S1. B3LYP/6-31G(d) calculations of
frequencies and vibrational reorganization
energies, λ_v , of A_g normal modes for F ₁₆ H ₂ Pc in
its neutral state.

Calculated	2	
Frequency	λ _ν	
(cm^{-1})	(meV)	(%)
103	2.73	2.25
161	0.02	0.02
271	0.05	0.04
271	0.07	0.06
313	0.46	0.38
326	0.09	0.07
436	0.48	0.39
462	0.24	0.20
568	0.88	0.73
722	8.27	6.84
743	9.01	7.45
947	22.76	18.81
969	4.01	3.31
1190	1.76	1.45
1334	0.05	0.04
1337	3.76	3.10
1381	0.18	0.15
1402	3.05	2.52
1441	21.04	17.38
1520	7.06	5.83
1524	0.33	0.27
1560	0.21	0.18
1617	0.86	0.71
1655	0.46	0.38
1668	33.08	27.34
3620	0.08	0.06
sum (meV) =	121.0	

2. Difference Spectrum between F_{16} CuPc thin-films grown on different substrate temperature

Fig. S1. Raman spectra ($\lambda_{exc} = 633$ nm) of F₁₆CuPc thin-films deposited at different substrate temperature: (a) 30 °C; (b) 120 °C. The spectra were normalized to the intensity of the 1540 cm⁻¹. Trace (a-b) is the difference spectrum, obtained by subtracting the spectra of (a) and (b). The bands discussed in the manuscript are labeled.

3. Polarized Raman spectrum

Fig. S2. Polarized Raman spectra ($\lambda_{exc} = 633$ nm) of the F₁₆CuPc film. The polarizations of the incident and detected light are parallel (*x*,*x*) and perpendicular (*x*,*y*) to each other. The dashed lines serve as guidelines.